بررسی اثر سطوح مختلف نیتروژن و تراکم کشت بر رقابت کلزا (Brassica napus L.) و علف‌هرز ارشته خطایی (Lepyrodiclis holosteoides Fenzl.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد شناسایی و مبارزه با علف‌های هرز ، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 گروه زراعت، دانشگاه علوم کشاورزی ومنابع طبیعی ساری

3 گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه بوعلی سینا، همدان، ایران

4 دانشجوی دکترا، دانشگاه علوم کشاورزی و منابع طبیعی ساری، تخصص: علوم علف های هرز

چکیده

به منظور بررسی اثر تراکم­های مختلف علف­هرز ارشته خطایی ((Lepyrodiclis holosteoides Fenzl. بر میزان اُفت عملکرد دانه و همچنین خصوصیات کیفی و کارائی زراعی نیتروژن کلزا، آزمایشی به ­صورت فاکتوریل و در قالب طرح بلوک‌های کامل تصادفی با سه تکرار، در سال زراعی 95-1394 در کرج اجرا شد. فاکتورها شامل مقدار نیتروژن از منبع کودی اوره در چهار سطح صفر، 50، 100 و 150 کیلوگرم نیتروژن خالص در هکتار، تراکم کلزا در دو سطح 70 و 90 بوته در متر مربع و تراکم علف‌هرز ارشته خطایی در چهار سطح صفر، پنج، 10 و 15 بوته در متر مربع بود. نتایج بدست آمده نشان داد که حداکثر اُفت عملکرد در تراکم­ 70 بوته در متر مربع با مصرف 150 کیلوگرم نیتروژن و 90 بوته کلزا در متر مربع با مصرف 100 کیلوگرم نیتروژن، به­ترتیب 26/54 و 78/45 درصد بود. نتایج نشان که بالاترین درصد و عملکرد روغن، به­ترتیب با 77/40 درصد با 1504 کیلوگرم در هکتار در تراکم 90 بوته کلزا در متر مربع و با مصرف 150 کیلوگرم در هکتار نیتروژن و بدون حضور علف‌هرز ارشته خطایی بدست آمد. بالاترین کارایی زراعی نیتروژن، با 89/19 کیلوگرم در کیلوگرم در تراکم 90 بوته کلزا و بدون حضور علف‌هرز مشاهده شد. بیشترین بهره­وری ناخالص نیتروژن، با 36/24 کیلوگرم در کیلوگرم، در تراکم 90 بوته در متر مربع کلزا و با کاربرد 50 کیلوگرم نیترون در هکتار مشاهده شد. نتایج اثر متقابل نیتروژن و تراکم علف‌هرز ارشته خطایی نشان داد که بالاترین بهره­وری ناخالص نیتروژن، با 87/23 کیلوگرم در کیلوگرم، در تیمار 50 کیلوگرم نیتروژن در هکتار و عدم حضور علف‌هرز ارشته خطایی مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different levels of nitrogen and planting density on rapeseed (Brassica napus L.) and lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) competition

نویسندگان [English]

  • Hossein Vahidpour 1
  • Faezeh Zaefarian 2
  • Shahram Nazari 3
  • Irandokht Mansoori 4
1 1M.Sc student of Weed Science, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Department of Agronomy, Sari Agricultural sciences and Natural Resourses
3 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
4 Instructor of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

To investigate the effect of different lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) densities on grain yield reduction, as well as qualitative and nitrogen agronomic efficiency of rapeseed (Brassica napus L.), a factorial experiment was conducted in a randomized complete block design with three replications in Karaj, 2016-2017. Factors included nitrogen content from urea fertilizer source at four levels (0, 50, 100 and 150 kg N/h, rapeseed densities (70 and 90 plants/m2) and weed density at four levels (0, 5, 10 and 15 plants/m2). The results showed that maximum yield loss at 70 and 90 plant densities of rapeseed/m2 was 26.54 and 78.45%, respectively, with 150 and 100 kg nitrogen. The highest percentage of oil and oil yield were 77.40% and 1504 kg/ha, respectively that were obtained by 90 plants/m2of rapeseed and 150 kgN/ha and no weed. The highest N-agronomic efficiency (89.19 kg/kg) was obtained by 90 rapeseed plants/m2 and without weed presence. The highest N-partial factor productivity was 36.24 kg/kg that was observed in 90 plants/m2 rapeseed and 50 kgN/ha. The results of nitrogen interaction and lepyrodiclis density indicated that the highest N-partial factor productivity (87.23 kg/kg) was observed in the treatment of 50 kg N/ha and absence of weed.

کلیدواژه‌ها [English]

  • Grain yield
  • nitrogen agronomic efficiency
  • oil percentage
  • rapeseed
  1. REFERENCES

    1. Akbari, G. A., Irannezhad, H., Hoseinzadeh, K., Zand, E., Hejazi, A. & Bayat, A. A. (2010). Effect of wild mustard (Sinapisarvensis L.) interference on yield and growth index of canola (Brassica napus L.). Iranian Journal of Field Crop Science, 41(2), 329-343. (In Farsi).
    2. Amanulla, A. (2015). Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L) planted at low and high densities on calcareous soil in northwest Pakistan. Journal of Plant Nutrition. 18, 683-690.
    3. Askew, S. D. & Wilcut, J. W. (2001). Tropic croton interference in cotton. Weed Science, 49, 184-189.
    4. Bauman, D. T. (2001). Competitive suppression of weeds in a leek-celery intercropping system. Ph.D. Thesis. Wageningen Agricultural University. The Netherlands.
    5. Bakhshandeh, A., Ghadirian, R., Galeshi, S. & Soltani, A. (2011). Modelling the effects water stress and temperature on seed germination of soybean (Glycine max L.) and velvetleaf (Abutilion thephrasti med.). Plant Production Research, 18(1), 29-48. (In Farsi).
    6. Clewis, S. B., Askew, S. D. & Wilcut, J. W. (2001). Common ragweed interference in peanut. Weed Science, 49, 68-772.
    7. Carlson, H. L. & Hill, J. E. (1985). Wild oat (Avena fatua) competition with spring wheat: plant density effects. Weed Science, 33, 176-181.
    8. Cassman, K. G., Gines, G. C., Dizon, M. A., Samaon, M. I. & Alcantra, M. (1996). Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Research, 47, 1-12.
    9. Cheema, M. A., Malik, M. A., Shah, S. H. & Basra, S. M. A. (2001). Effect of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus). Journal of Agronomy and Crop Science, 186, 311-316.
    10. Cousens, R. (1985). A simple model relating yield loss to weed density. Annals of Applied Biology, 107, 239-252.

     

    1. Doyle, A. D. & Holford I. C. R. (1993). The uptake of nitrogen by wheat, its agronomic efficiency and their relationship to soil and nitrogen fertilizer. Australian Journal of Agricultural Research, 44, 1245-1258.
    2. Delaney, M. R. & Van Acker, R. C. (2005). Effect of nitrogen fertilizer and landscape position on wild oat (Avena fatua) interference in spring wheat. Weed Science, 53, 869-876.
    3. Dua, V. K., Govindakrishnan, P. M., Lal, S. S. & Khurana, S. M. P. (2007). Partial factor productivity on nitrogen in potato. Better Crops, 91, 25-27.
    4. Eslami, S. V., Gill, G. S., Bellotti, B. & McDonald, G. (2006). Wild radish (Raphanus raphanistrum) interference in wheat. Weed Science, 54, 749-756.
    5. Goodroad L. L. & Jellum M. D. (1988). Effect of N fertilizer rate and soil ph on N efficiency in corn. Plant and Soil, 106, 85-89.
    6. Gastal F. & Lemaire G. (2002). N uptake and distribution in crops: anagronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789-799.
    7. Greef, J. M. (1994). Productivity of maize in relation to morphological physiological characteristics under varying amounts of nitrogen supply. Journal of Agronomy and Crop Science, 173, 317-326.
    8. Habbib, H., Hirel, B., Verzeaux, J., Roger, D., Lacoux, J., Lea, P., Dubois, F. & Tetu, T. (2017). Investigating the combined effect of tillage, nitrogen fertilization and cover crops on nitrogen use efficiency in winter wheat. Agronomy, 66, 1-15.
    9. Hamzei, J., MohammadyNasab, A. D., Khoie, F. R., Javanshir, A. & Moghaddam, M. (2007). Critical period of weed control in three winter oilseed rape (Brassica napus L.) cultivars. Turkish Journal of Agricultural and Forestry, 31, 83-90.
    10. Hendrix, B. J., Young, B. G. Y. & Chong, S. (2004). Weed management in strip tillage corn. Agronomy Journal, 96, 229-235.
    11. Holmes, M. J. R. (1980). Nutrition of the Oilseed Rape Crop. Applied Science Publishers: London, UK.
    12. Hopkins, W. G. & Hunter, A. N. (2004). Introduction to plant physiology. 3rd ed. John Wiely & Sons Pub. New York. 560 pp.
    13. Hussain, A., Nadeem, A., Ashraf, I. & Awan, M. (2009). Effect of weed competition periods on the growth and yield of black seed (Nigella sativa L.). Pakistan Journal of Weed Science Research, 15(1), 71-81.
    14. Kim, I. S., Binfield, J., Patton, M., Zhang, L. & Moss, J. (2013). Impact of increasing liquid biofuel usage on EU and UK agriculture. Food Policy, 38, 59-69.
    15. Khan, I., Gul H., Muhammad Khan, I. & Gul, M. (2007). Effect of wild Oat (Avena fatua L.) population and nitrogen levels on some agronomic traits of spring wheat (Triticum aestivum L.). Turkish Journal Agriculture and Foresry, 31, 91-101.
    16. Lemerle, D., Gill, G. S., Murphy, C. E., Walker, S. R., Cousens, R. D., Mokhtari, S., Peltzer, S. J., Coleman, R. & Luckett, D. J. (2001). Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Crop Pesticide Science, 52, 527-548.
    17. Lemerle, D., Luckett, D. J., Wu, H. & Widderick, M. (2017). Agronomic interventions for weed management in canola (Brassica napus L.) - A review. Crop Protection, 95: 69-73.
    18. Li, H., Cong, R., Ren, T., Li, X., Ma, C., Zheng, L., Zhang, Z. & Lu, J. (2015). Yield response to N fertilizer and optimum N rate of winter oilseed rape under different soil indigenous N supplies. Field Crops Research, 181, 52-59.
    19. Massinga, R. A., Currie, R. S., Horak, M. J. & Boyer, J. (2001). Interference of Palmer amaranth in corn. Weed Science, 49, 202-208.
    20. Minbashi-Moeeni, M. (2011). Preparation of weed species distribution of Iran wheat fields with GIS. Research Report, Iranian Research Institute of Plant Protection. 300Pp. (In Farsi).
    21. Momoh, E. J. J. & Zhou, W. (2001). Growth and yield responses to plant density and stage of transplanting in winter oilseed rape (Brassica napus L.). Journal of Agronomy and Crop Science, 186 (4), 253-259.
    22. Papari Moghadam Fard, A. & Bahrani, M. J. (2005). Effect of nitrogen fertilizer rates and plant density on some agronomic charactristics, seed yield, oil and protein percentage in two sesame cultivars. Iranian Journal of Agricultural Science, 36, 129-135. (In Farsi).
    23. Rahnama, A. A. & JafariNejad, A. R. (2009). Determination of optimum nitrogen levels in different planting dates of canola in Khouzestan. Journal of Plant Production, 32(1), 53-63. (In Farsi).
    24. Rathke, G. W., Christen, O. & Diepenbrock, W. (2005). Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research, 94(2), 103-113.
    25. Rathke, G. W., Behrens, T. & Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, Ecosystems and Environment, 117, 80-108.
    26. Weiner, J., Griepentrog H. W. & Kristensen L. (2001). Suppression of weeds by spring wheat (Triticum aestivum) increases with crop density and spatial uniformity. Journal of Applied Ecology, 38, 784-790.
    27. Xu, H. L., Lu, J. W., Li, X. K., Wang, Y. & Su, W. (2011). Fertilization of rape fields in Jiangsu Province. Soils, 43, 746–750. (in Chinese with English abstract).
    28. Yaghoubi, S., Aghaalikhani, M., Ghelavand, A. & Zand, E. (2011). Investigation of herbicide-nitrogen interaction on wheat yield and yield components in competition with Lepyrodiclis holosteoides Fenzl. Weed Science, 7(1), 13-31. (In Farsi).
    29. Zhu, Z. L. & Chen, D. L. (2002). Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 63, 117-127.