تأثیر تنش گرمای انتهای فصل بر دانه گرده و توان دانه‌بندی ژنوتیپ‌های جو (Hordeum vulgar L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه زراعت و اصلاح نباتات دانشکده‌کشاورزی دانشگاه شهید چمران اهواز

2 دانشیار گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه شهید چمران اهواز

چکیده

در این پژوهش، اثر تیمارهای مختلف دمایی شامل 25 (شاهد)، 30، 35، 40 و 50 درجه سانتی‌گراد بر مورفولوژی دانه گرده، جوانه‌زنی و رشد لوله گرده در شرایط آزمایشگاهی و نیز تأثیر تنش گرمای انتهای فصل در طی کشت تأخیری بر تعداد دانه گرده در سنبله، عملکرد دانه و اجزای عملکرد 10 رقم جو در شرایط مزرعه‌ای شهرستان اهواز مورد بررسی قرار گرفت. با افزایش دما، جوانه‌زنی و طول لوله گرده همه ژنوتیپ‌ها به شدت کاهش یافت. در دمای 50 درجه سانتی‌گراد این کاهش به طور متوسط 72 و 60 درصد برای جوانه‌زنی و طول لوله گرده برآورد گردید. ژنوتیپ‌های مختلف، پاسخ متفاوتی به تیمارهای دمایی از نظر جوانه‌زنی و طول لوله گرده نشان دادند که بیانگر تفاوت بین ارقام از نظر تحمل به گرما بود. بر اساس شاخص پاسخ تنش کل (TSRI) در شرایط آزمایشگاهی، ارقام به سه گروه متحمل (جنوب، ریحان03، زهک، نصرت و خرم)، نیمه‌حساس (یوسف، ایذه و ماهور) و حساس (نیمروز و آبیدر) طبقه بندی شدند. مشاهدات صورت گرفته به کمک میکروسکوپ الکترونی نگاره نشان داد که تنش گرما باعث تغییر مورفولوژی و ساختار منظم و خاص دانه گرده‌ شد بطوری‌که برآمدگی‌ها و چین‌خوردگی‌های لایه اگزین دانه گرده تغییر یافت و در دماهای بالا تزئینات سطح اگزین دانه‌ گرده از بین رفت. تنش گرما سبب کاهش تعداد دانه گرده در سنبله (90 درصد)، عملکرد دانه (42 درصد) و سایر اجزای عملکرد گردید. براساس یافته‌های این پژوهش، مطالعه دانه گرده، اطلاعات مفیدی برای تسهیل و تسریع در غربالگری ژنوتیپ‌های جو متحمل به گرما و شناسایی مکانیزیم‌های افزایش تحمل به گرما در برنامه‌های به نژادی مناطق گرم فراهم می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of terminal heat stress on pollen and ability of seed setting in barley genotypes (Hordeum vulgare L.)

نویسندگان [English]

  • Akram Oraki 1
  • Mohammad Reza Siahpoosh 2
  • Afrasyab Rahnama 2
1 MSc student
2 Faculty member of Shahid Chamran University of Ahvaz
چکیده [English]

In this research, the effects of different temperatures treatments including (25 (control), 30, 35, 40 and 50 0C) on pollen germination, pollen tube growth, and pollen morphology were investigated in vitro, and also the effect of late sowing date as heat stress on the number of pollen, also yield and yield components of 10 barley genotype was evaluated in field condition. At 50 0C this decrease was 72 and 60% for germination and length of pollen tube on average. High temperature significantly decreased pollen germination and pollen tube length in all genotypes. Genotypes showed different responses to temperature treatments, indicating different levels of tolerance among genotypes. In vitro, genotypes were divided into three groups according to the TSRI index as tolerant (Jounob, Reyhan 03, Zehak, Nosrat, Khoram), semi-sensitive (Yousef, Izeh, and Mahour) and sensitive (Abidar and Nimrooz) genotypes. Heat stress influenced pollen morphological aberrations, so that high temperature was removed the ornamentation of axin surface. Heat stress led to a decrease in the number of pollen grains per spike (90 %), yield and yield components (40%). These approaches showed that pollen performance may provide useful information to facilitate the investigation of heat-tolerant genotypes in breeding programs suitable for warm climates.

کلیدواژه‌ها [English]

  • Barley
  • grain yield
  • heat stress
  • pollen germination
  • pollen tube length
  1. REFERENCES

    1. Abiko, M., Akibayashi, K., Sakata, T., Kimura, M., Kihara, M., Itoh, K. & Higashitani, A. (2005). High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 18(2), 91-100.
    2. Acar, I., & Kakani, V. G. (2010). The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Scientia Horticulture, 125(4), 569-572.
    3. Ayeneh, A., Van Ginkel, M., Reynolds, M. P. & Ammar, K. (2002). Comparison of a leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research, 79(2), 173-184.
    4. Dai, Q., Shaobing, P., Chavez, A. Q. & Vergara, B. S. (1994). Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environmental and Experimental Botany, 34(4), 433-442.
    5. Daneshmand, F., Manouchehri Kalantari. KH. (2010). The effect of heat stress on in-vitro pollen grain germination and pollen tube growth in Capsicum annuum L. Iranian Journal of Biology, 22(4), 636-644. (in Farsi).
    6. Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., & Tan, D. K. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9-19.
    7. Distefano, G., Hedhly, A., Las Casas, G., La Malfa, S., Herrero, M. & Gentile, A. (2012). Male-female interaction and temperature variation affect pollen performance in Citrus. Scientia Horticulturae, 140, 1-7.
    8. Firon, N., Shaked, R., Peet, M. M., Pharr, D. M., Zamski, E., Rosenfeld, K. & Pressman, E. (2006). Pollen grains of heat-tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae, 109(3), 212-217.
    9.  Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect of high-temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Annals of Botany, 82(5), 631-639.
    10. Fischer, R. A. & Maurer, R. (1978).Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop and Pasture Science, 29(5), 897-912.
    11. Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9-16.
    12.  Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30-36.
    13. Higashitani, A. (2013). High temperature injury and auxin biosynthesis in microsporogenesis. Frontiers in Plant Science, 4 (47), 1-4.
    14. Hormaza, J. I. & Herrero, M. (1996). Dynamics of pollen tube growth under different competition regimes. Sexual Plant Reproduction, 9(3), 153-160.
    15. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A. (Eds.) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I of the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA, 555 pp.
    16. Jäger, K., Fábián, A. & Barnabás, B. (2008). Effect of water deficit and elevated temperature on pollen development of drought sensitive and tolerant winter wheat (Triticum aestivum L.) genotypes. Acta Biologica Szegediensis, 52(1), 67-71.
    17. Kakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V. V., Reddy, V. R. & Zhao, D. (2005). Differences in in-vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 96(1), 59-67.
    18. Koti, S., Reddy, K. R., Reddy, V. R., Kakani, V. G. & Zhao, D. (2005).Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany, 56(412), 725-736.
    19. Koubouris, G, C., Metzidakis, I. T., & Vasilakakis, M. D. (2009).Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environmental and Experimental Botany, 67(1), 209-214.
    20. Lobell, D.B., Schlenker, W. & Costa-Roberts J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.
    21. Modarresi, M., Mohammadi, V., Zali, A., & Mardi, M. (2010). Response of wheat yield and yield related traits to high temperature. Cereal Research Communications, 38(1), 23-31.
    22. Nevo, E. & Shewry, P. R. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. Barley: genetics, biochemistry. Molecular Biology and Biotechnology, pp. 19-43.
    23. Omidi. M., Siahpoosh, M. R., Mamghani, R. and Modarresi, M. (2014). The influence of terminal heat stress on meiosis abnormalities in pollen mother cells of wheat. Cytologia. 79: 49-58.
    24. Oraki, A. Siahpoosh, M. R., Rahnama, A. & Lakzadeh, I. (2016). The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Field Crop Science, 47 (1), 29-40. (in Farsi)
    25.  Passarella, V. S., Savin, R., & Slafer, G. A. (2008). Are temperature effects on weight and quality of barley grains modified by resource availability? Australian Journal of Agricultural Research, 59(6), 510-516.
    26. Pressman, E., Peet, M. M. & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90(5), 631-636.
    27. Sakata, T., Yagihashi, N. & Higashitani, A. (2010).Tissue-specific auxin signaling in response to temperature fluctuation. Plant Signaling & Behavior, 5(11), 1510-1512.
    28. Snow, A. A. & Spira, T. (1991). Pollen vigor and the potential for sexual selection in plants. Nature, 352, 796-797.
    29. Wang, X., Cai, J., Liu, F., Jin, M., Yu, H., Jiang, D. & Cao, W. (2012). Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science, 55(3), 331-336.
    30. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421.‏
    31. Zinn, K. E., Tunc-Ozdemir, M. & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61 (7), 1959–1968.