تغییرات بیوشمیایی نعناع فلفلی (Mentha piperita L.) در شرایط خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات- پردیس کشاورزی و منابع طبیعی-.دانشگاه تهران

2 استاد دانشگاه تهران

3 گروه بیوتکنولوژی میکروبی- دانشکده بیوتکنولوژی- دانشگاه تکنولوژی های خاص مدرن آمل

چکیده

تولید گیاهان دارویی مانند نعناعیان بطور چشمگیری در جهان در حال افزایش است. یکی از گیاهان مهم این خانواده، نعناع فلفلی (Mentha piperita L.) است. اهمیت آن بدلیل ترکیب منتول در اسانس آن است. در این پژوهش، پاسخ های فیزیولوژیک و بیوشیمایی نعناع فلفلی در سطوح مختلف آبیاری شامل: نرمال، 75، 50 و 25 درصد ظرفیت زراعی (FC) در قالب طرح کاملا تصادفی با سه تکرار در گلخانه تحقیقاتی گروه زراعت و اصلاح نباتات دانشگاه تهران در سال 1392 بررسی شد. نتایج تجزیه واریانس نشان داد که آبیاری اثر معنی‌داری روی H2O2، MDA، محتوای پروتئین محلول،آنزیم های GPX ،APXو SOD در سطح احتمال یک درصد (P≤0.01) داشت. در حالی که اثر تیمار آبیاری بر محتوای قند‌های محلول معنی‌دار نبود. بیشترین میزان قند محلول و پروتئین محلول به ترتیب در تیمارهای 50 و 75 درصد FC مشاهده شد. بیشترین میزان تولید پراکسیدهیدروژن و پراکسیداسیون چربی برحسب MDA در تیمار25 درصد FC به ترتیب با میزانµmol/g 63/59 و µmol/g 25/16مشاهده شد که تفاوت معنی‌داری نسبت به تیمار شاهد و سایر تیمارها نشان دادند. بیشترین میزان فعالیت آنزیم‌های آنتی اکسیدانی CAT, APX و GPX در سطح 50 درصد FC و با افزایش تنش خشکی کاهش معنی‌داری پیدا کرد. فعالیت آنزیم سوپراکسید دیسموتاز با افزایش تنش، افزایش یافت، به طوری که بیشترین میزان آن در آبیاری 25 درصد FC مشاهده گردید. براساس نتایج این پژوهش می‌توان بیان داشت که نعناع فلفلی به تنش خشکی حساس بوده و پتانسل لازم جهت افزایش ظرفیت آنتی اکسیدانی را در تنش‌های ملایم و شدید دارا نیست

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biochemical changes of peppermint under drought stress condition

نویسندگان [English]

  • Yousef Rahimi 1
  • Alireza Taleei 2
  • Mojtaba Ranjbar 3
1 Department of Agronomy, College of Agriculture and Natural Resources, University of Tehran
2 Professor of University of Tehran
3 Microbial Biotechnology Department, College of Biotechnology, Special Modern Technological University of Amol, Amol
چکیده [English]

The Cultivation of medicinal plants such as Lamiaceae family increasing throughout the world significantly. Peppermint consider as an important species in this family which it’s important is due to menthol in essential oil. In this study the physiological and biochemical responses of peppermint investigated under different levels of irrigation including 100 (as control), 75, 50 and 25 % field capacity (FC) in CRD design with three replications in research greenhouse of Agronomy Department of University of Tehran in 2013. The results of Anova indicated that, irrigation levels had high significant effect (P≤0.01) on H2O2, MDA, CAT, APX, GPX and SOD. While, the effect of irrigation levels was not considerable on soluble sugar content. The highest content of soluble sugar and soluble protein were observed at 50 and 75 % FC, respectively. The highest H2O2 and MDA (59.63 and 16.25 µmol/g) observed at 25% FC with significant difference in respect to other treatments. The highest activity of antioxidant enzymes CAT, APX and GPX detected at 50 % FC and reduced with increasing of drought stress up to 25 % FC. The activity of SOD increased with increasing of the drought stress and reaching it to maximum amount at 25 % FC. These results suggest that peppermint is a sensitive plant and cannot increase its capacity against drought stress.

کلیدواژه‌ها [English]

  • Peppermint
  • Soluble sugar
  • Lipid Peroxidation
  • Antioxidant Enzymes
  1. Aebi, H. (1984). Catalase in vitro. Methods in enzymology105, 121-126.
  2. Almodares, A., Hadi, M. R. & Dosti, B. (2008). The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Research Journal of Environmental Sciences2(4), 298-304.
  3. Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research6(9), 2026-2032.
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry72(1-2), 248-254.
  5. Breitmaier, E. (2006). Terpenes: Importance, general structure, and biosynthesis. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones, 1-9.
  6. Candan, N. & Tarhan, L. (2011). Influence of manganese deficiency on metal ion uptake, antioxidant defense mechanism and lipid peroxidation levels in Mentha piperita leaves. Acta Biologica Cracoviensia Series Botanica53(1), 20-25.
  7. Candan, N. & Tarhan, L. (2012). Alterations of the antioxidative enzyme activities, lipid peroxidation levels, chlorophyll and carotenoid contents along the peppermint (Mentha piperita L.) leaves exposed to copper deficiency and excess stress conditions. Journal of Applied Botany and Food Quality83(2), 103-109.
  8. Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in enzymology2, 764-775.
  9. Clark, R. J. & Menary, R. C. (1980). Environmental effects on peppermint (Mentha piperita L.). I. Effect of day length, photon flux density, night temperature and day temperature on the yield and composition of peppermint oil. Functional Plant Biology7(6), 685-692.

10. Çoban, Ö. & Baydar, N. G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products86, 251-258.

11. Çoban, Ö. & Baydar, N. G. (2017). Brassinosteroid Modifies Growth and Essential Oil Production in Peppermint (Mentha piperita L.). Journal of Plant Growth Regulation36(1), 43-49.

12. Croteau, R. B., Davis, E. M., Ringer, K. L. & Wildung, M. R. (2005). Menthol biosynthesis and molecular genetics. Naturwissenschaften92(12), 562-577.

13. Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant signaling & behavior3(3), 156-165.

14. Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany109, 212-228.

15. De Sousa Guedes, J. P., da Costa Medeiros, J. A., e Silva, R. S. D. S., de Sousa, J. M. B., da Conceição, M. L. & de Souza, E. L. (2016). The efficacy of Mentha arvensis L. and Mentha piperita L. essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. International Journal of Food Microbiology238, 183-192.

16. Dhindsa, RS., Plumb-Dhindsa,  P. & Thorpe, TA. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental botany32(1), 93-101.

17. Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., Barba-Espin, G. & Hernandez, J. A. (2011). Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of experimental botany, 32(2): 231-238.

18. Fazeli, F., Ghorbanli, M. & Niknam, V. (2007). Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum51(1), 98-103.

19. Foyer, C. H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & redox signaling11(4), 861-905.

20. Foyer, C. H. & Noctor, G. (2013). Redox signaling in plants. Antioxidants & Redox Signaling, 18(16): 2087-2090.

21. Gupta, A. K. & Kaur, N. (2005). Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of biosciences30(5), 761-776.

22. Ghorbanli, M., Gafarabad, M., Amirkian, T. & Mamaghani, B. A. (2013). Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology3, 651-658.

23. Giannopolitis, C. N. & Ries., S.K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant physiology59(2), 309-314.

24. Gill, P. K., Sharma, A. D., Singh, P. & Bhullar, S. S. (2001). Effect of various abiotic stresses on the growth, soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulgarian Journal of Plant Physiology27(1-2), 72-84.

25. Gratao, P., Polle, A., Lea, P. & Azevedo, R. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32: 481–494.

26. Hasani, M., Nouri, M., Hakimzadeh, V. & Maleki, M. (2015). Chemical composition and antimicrobial activity of the essential oil of Mentha piperita endemic in Khorasan-Iran. BioTechnology: An Indian Journal11(5), 197-200.

27. Hassanpour, H. & Niknam, V. (2014). Investigation of drought stress effect on growth and antioxidant enzymes activity in Mentha pulegium L. Journal of plant process and function. Vol. 3. )8(, 25-34. (In Farsi)

28. Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Najafi, F. & Razavi, K. (2012). Effects of penconazole and water deficit stress on physiological and antioxidative responses in pennyroyal (Mentha pulegium L.). Acta physiologiae plantarum34(4), 1537-1549.

29. Health, R.L. & Packer, L. (1968) Photoperoxidation in isolated chloroplast.I.Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198.

30. Heidarizadeh, P., Zahedi, M. & Sabzalian, M.R. (2014). Effect of LED light on plant yield, essential oil percentage and antioxidant enzymes activity in Mentha piperita L. Journal of plant process and function. 3 )3(:13-24. (In Farsi)

31. Hilal, M., Parrado, M. F., Rosa, M., Gallardo, M., Orce, L., Massa, E. M. & Prado, F. E. (2004). Epidermal Lignin Deposition in Quinoa Cotyledons in Response to UV-B Radiation. Photochemistry and Photobiology79(2), 205-210.

32. Hosseini, S. M., Hasanloo, T. & Mohammadi, S. (2015). Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turkish Journal of Agriculture and Forestry, 39(3), 413-420. Chicago           

33. Hu, L., Wang, Z., Du, H. & Huang, B. (2010). Differential accumulation of dehydrins in response to water stress for hybrid and common Bermuda grass genotypes differing in drought tolerance. Journal of plant physiology167(2), 103-109.

34. Irriogyen, J.H., Emerich, D.W. & Sanchez Diaz, M. (1992). Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa plant. Physiologia plantarum. 84: 55-66.

35. Jin, J., Shan, N., Ma, N., Bai, J., & Gau, J. (2006). Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (Rosa hybrida L.) cv. Samantha. Postharvest biology and technology, 40(3): 236-242.

36. Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K. & Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). Journal of Medicinal Plants Research5(22), 5360-5365.

37. Lascano, H. R., Antonicelli, G. E., Luna, C. M., Melchiorre, M. N., Gómez, L. D., Racca, R. W. & Casano, L. M. (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Functional Plant Biology28(11), 1095-1102.

38. Lipiec, J., Doussan, C., Nosalewicz, A. & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics27(4), 463-477.

39. Lisar, S. Y., Motafakkerazad, R., Hossain, M. M. & Rahman, I. M. (2012). Water stress in plants: causes, effects and responses. In Water Stress in Tech. pp. 1–14.

40. Loreto, F. & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4): 1781-1787.

 

41. Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S. & Foyer, C. H. (2005). Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of experimental botany56(411), 417-423.

42. Mafakheri, A. (2011). Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Australian Journal of Crop Science5(10), 1255-1260.

43. Maruta, T., Sawa, Y., Shigeoka, S. & Ishikawa, T. (2016). Diversity and evolution of ascorbate peroxidase functions in chloroplasts: More than just a classical antioxidant enzyme? Plant and Cell Physiology57(7), 1377-1386.

44. McKay, D. L. & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research20(8), 619-633.

45. Merati, M. J., Hassanpour, H., Niknam, V. & Mirmasoumi, M. (2014). Exogenous application of penconazole regulates plant growth and antioxidative responses in salt-stressed Mentha pulegium L. Journal of plant interactions9(1), 791-801.

46. Miller, G. A. D. & Mittler, R. O. N. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants?. Annals of Botany98(2), 279-288.

47. Miller, G. A. D., Suzuki, N., Ciftci‐yilmaz, S., & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment33(4), 453-467.

48. Mohammadkhani, N. & Heidari, R. (2008). Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Applied Sciences Journal3(3), 448-453.

49. Morsy, M. R., Jouve, L., Hausman, J. F., Hoffmann, L. & Stewart, J. M. (2007). Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Journal of plant physiology164(2), 157-167.

50. Nath, M., Bhatt, D., Prasad, R. & Tuteja, N. (2017). Reactive Oxygen Species (ROS) Metabolism and Signaling in Plant-Mycorrhizal Association under Biotic and Abiotic Stress Conditions. In Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials (pp. 223-232). Springer, Cham.

51. Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science22(1), 53-65.

52. Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R. & Lachaal, M. (2010). Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum32(2), 289-296.

53. Rahimi, Y., Taleei, A. & Ranjbar, M. (2017). Changes in the expression of key genes involved in the biosynthesis of menthol and menthofuran in Mentha piperita L. under drought stress. Acta Physiologiae Plantarum, 39(9), 203.

54. Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali Sodi, A. & Soldatini, G. F. (2003). Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. Journal of Experimental Botany54(392), 2529-2540.

55. Rasool, S., Ahmad, A., Siddiqi, T. O. & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta physiologiae plantarum35(4), 1039-1050.

56. Rasouli, D., Solouki, M., Fakheri, B. & Esmaelzadeh, B. S. (2016). Evaluation of antioxidant enzymes activities, proline, soluble sugars, photosynthetic pigments and essential oils of Mentha piperita L. in response to foliar application of salicylic acid and manganese stress. Iranian Journal of Medicinal and Aromatic Plants, 32:(1), 71-82. (In Farsi)

57. Razmjoo, K. H, Heydarizadeh, P. & Sabzalian, M. R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomileInternational Journal of Agriculture & Biology10(4), 451-454.

58. Rhizopoulou, S., & Diamantoglou, S. (1991). Water stress-induced diurnal variations in leaf water relations, stomatal conductance, soluble sugars, lipids and essential oil content of Origanum majorana L. Journal of Horticultural Science66(1), 119-125.

59. Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J. & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of experimental botany64(11), 3201-3212.

60. Rosa, M., Hilal, M., González, J. A. & Prado, F. E. (2009 a). Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiology and Biochemistry47(4), 300-307.

61. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M. & Prado, F. E. (2009 b). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant signaling & behavior4(5), 388-393.

62. Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. (2016). Role of sugars under abiotic stress. Plant Physiology and Biochemistry109, 54-61.

63. Savi, T., Casolo, V., Luglio, J., Bertuzzi, S., Gullo, M. A. L. & Nardini, A. (2016). Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. Plant Physiology and Biochemistry106, 198-207.

64. Sekmen, A. H., Ozgur, R., Uzilday, B. & Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and experimental botany99, 141-149.

65. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany2012. Article ID 217037, 26 pages, 2012.

66. Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany58(2), 221-227.

67. Sobhanian, H., Motamed, N., Jazii, F. R., Nakamura, T. & Komatsu, S. (2010). Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. Journal of proteome research9(6), 2882-2897.

68. Strand, A., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardeström, P. & Stitt, M. (1999). Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiology119(4), 1387-1398.

69. Svetleva, D., Krastev, V., Dimova, D., Mitrovska, Z., Miteva, D., Parvanova, P. & Chankova, S. (2012). Drought tolerance of Bulgarian common bean genotypes, characterized by some biochemical markers for oxidative stress. Journal of Central European Agriculture, 18: 13(2), 349-361.

70. Tatari, M., Fotouhi-Ghazvini, R., Etemadi, N. A., Ahadi, A. M. & Mousavi, A. (2012). Analysis of antioxidant enzymes activity, lipid peroxidation and proline content of Agropyron desertorum under drought stress. South Western Journal of Horticulture. Biology and Environment3(1), 9-24.

71. Tayefi-Nasrabadi, N. H., Oushani, A. K. & Enferadi, M. H. N. (2012). Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish physiology and biochemistry, 38(2): 413-419.

72. Todaka, D., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in plant science6. Frontiers in Plant Science. 2015; 6: 84.

73. Türkan, İ., Bor, M., Özdemir, F. & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science168(1), 223-231.

74. Vanacker, H., Carver, T. L. & Foyer, C. H. (1998). Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology117(3), 1103-1114.

75. Yang, Y., Han, C., Liu, Q., Lin, B. & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum30(4), 433-440.