نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری گروه زراعت
2 دانشکده کشاورزی دانشگاه تربیت مدرس
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Innovative strategies are needed to improve water and nitrogen use efficiencies in sandy soils. The objectives of this study were to quantify the amount of nitrate leaching losses under conventional and integrated nutrient management of canola and wheat. The experiment was carried out using a randomized complete-block design, with three replications. Fertilization treatments including: urea (CF), urea + zeolite (CF-Z), urea + composted manure (IF), urea + composted manure + zeolite (IF-Z) and control (CK). The maximum water deep percolation was occurred after irrigation in November and May. The average of annual nitrate leaching losses for CF, CF-Z, IF, IF-Z and CK were 53.64, 41.21, 33.16, 25.59 and 9.23 kg.ha-1, respectively. The maximum and minimum annual nitrate leaching factor were achieved with the CF (47%) and IF-Z (10%) treatments, respectively. Annual nitrate leaching losses and annual nitrate leaching factor showed positive and significant correlations with the amount of water inputs in the months. The IF-Z fertilizer treatment produced the highest grain yield for canola (3661.5 kg.ha-1) and wheat (4058.9 kg.ha-1). The results showed that application of manure compost and zeolite could be a useful methods for decreasing chemical fertilizer application rates and improving the sustainability of agricultural systems.
کلیدواژهها [English]
10. Dawson, J.C., Huggins, D.R. & Jones, S.S. (2008). Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. F. Crop. Res. 107, 89–101.
11. Edmeades, D.C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr. Cycl. Agroecosystems 66, 165–180. doi:Doi 10.1023/A:1023999816690
12. Eghball, B. (2002). Soil properties as influenced by phosphorus-and nitrogen-based manure and compost applications. Agron. J. 94, 128–135.
13. Eghball, B., Lesoing, G.W. (2000). Viability of weed seeds following manure windrow composting. Compost Sci. Util. 8, 46–53.
14. Eghball, B., Power, J.F., Gilley, J.E. & Doran, J.W. (1997). Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ. Qual. 26, 189–193.
15. Eichler, F. & Schulz, D. (1998). The nitrogen reduction programme in the Federal Republic of Germany. Environ. Pollut. 102, 609–617.
16. Errebhi, M., Rosen, C.J., Gupta, S.C. & Birong, D.E. (1998). Potato yield response and nitrate leaching as influenced by nitrogen management. Agron. J. 90, 10–15.
17. Evanylo, G., Sherony, C., Spargo, J., Starner, D., Brosius, M. & Haering, K. (2008). Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 127, 50–58. doi:http://dx.doi.org/10.1016/j.agee.2008.02.014
18. Franzluebbers, a J., Hons, F.M. & Saladino, V. a. (1995). Sorghum, Wheat and Soybean Production As Affected By Long-Term Tillage, Crop Sequence and N Fertilization. Plant Soil 173, 55–65. doi:10.1007/bf00155518
19. Gholamhoseini, M., AghaAlikhani, M., Mirlatifi, S.M. & Sanavy, S.A.M.M. (2013a). Weeds – Friend or foe? Increasing forage yield and decreasing nitrate leaching on a corn forage farm infested by redroot pigweed. Agric. Ecosyst. Environ. 179, 151–162. doi:http://dx.doi.org/10.1016/j.agee.2013.08.016
20. Gholamhoseini, M., Ghalavand, A., Khodaei-Joghan, A., Dolatabadian, A., Zakikhani, H. & Farmanbar, E. (2013b). Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 126, 193–202.
21. Harland, J., Lane, S. & Price, D. (1999). Further experiences with recycled zeolite as a substrate for the sweet pepper crop. Acta Hort 481, 187–194.
22. Huang, Z.T. & Petrovic, A.M. (1994). Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens. J. Environ. Qual. 23, 1190–1194.
23. Ju, X.T., Kou, C.L., Zhang, F.S. & Christie, P. (2006). Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 143, 117–125.
24. Leclerc, B., Georges, P., Cauwel, B. & Lairon, D. (1995). A five year study on nitrate leaching under crop fertilized with mineral and organic fertilizers in lysimeter. J. Environ. Qual. 23, 337–343.
25. Leggo, P.J., Ledésert, B. & Christie, G. (2006). The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Sci. Total Environ. 363, 1–10.
26. Li, S. (2000). [Leaching loss of nitrate from semiarid area agroecosystem]. Ying yong sheng tai xue bao= J. Appl. Ecol. sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 11, 240–242.
27. Li, X., Hu, C., Delgado, J.A., Zhang, Y. & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agric. Water Manag. 89, 137–147.
28. Min, J., Zhang, H. & Shi, W. (2012). Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agric. water Manag. 111, 53–59.
29. Mumpton, F.A. (1999). Uses of natural zeolite in agriculture and industry.
30. Nus, J.L. & Brauen, S.E. (1991). Clinoptilolitic zeolite as an amendment for establishment of creeping bentgrass on sandy media. HortScience 26, 117–119.
31. Ok, C.-H., Anderson, S.H. & Ervin, E.H. (2003). Amendments and construction systems for improving the performance of sand-based putting greens. Agron. J. 95, 1583–1590.
32. Power, Jf. & Schepers, J.S. (1989). Nitrate contamination of groundwater in North America. Agric. Ecosyst. Environ. 26, 165–187.
33. Reganold, J.P. (1995). Soil quality and profitability of biodynamic and conventional farming systems: A review. Am. J. Altern. Agric. 10, 36–45.
34. Rehakova, M., Čuvanová, S., Dzivak, M., Rimár, J. & Gaval’Ova, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 8, 397–404.
35. Sharma, P., Shukla, M.K., Sammis, T.W., Steiner, R.L. & Mexal, J.G. (2012). Nitrate-nitrogen leaching from three specialty crops of New Mexico under furrow irrigation system. Agric. water Manag. 109, 71–80.
36. Song, X.-Z., Zhao, C.-X., Wang, X.-L. & Li, J. (2009). Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. C. R. Biol. 332, 385–392.
37. Spalding, R.F. & Exner, M.E. (1993). Occurrence of nitrate in groundwater—a review. J. Environ. Qual. 22, 392–402.
38. Vázquez, N., Pardo, A., Suso, M.L. & Quemada, M. (2005). A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetable crops. Plant Soil 269, 297–308.
39. Warrington, R., (1905). Lost fertility, the production and loss of nitrate in the soil. Trans. Highl. Agric. Soc. Scotl. 1–35.
40. Xing, G.X. & Zhu, Z.L. (2000). An assessment of N loss from agricultural fields to the environment in China. Nutr. Cycl. Agroecosystems 57, 67–73.
41. Yan, W., Yamamoto, K. & Yakushido, K. (2002). Changes in nitrate N content in different soil layers after the application of livestock waste compost pellets in a sweet corn field. Soil Sci. plant Nutr. 48, 165–170.
42. Yin, X.F., Tong, Y.A., Zhang, S.L., Zeng, Y.J., Gao, P.C., Zhou, J. & Yang, X.L. (2010). [Nitrate leaching characteristics of wheat-corn rotation farmland in Guanzhong area of Shaanxi]. Ying yong sheng tai xue bao= J. Appl. Ecol. sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 21, 640–646.
43. Zare Abyaneh, H. & Bayat Varkeshi, M. (2015). Effect of Nano-chelate Nitrogen and Urea Fertilizers on Nitrate Leaching and Its Distribution in Soil Profile and Potato Plant. Water soil Sci. 25, 25–40.
44. Zhao, C., Hu, C., Huang, W., Sun, X. & Tan, Q., Di, H. (2010). A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. J. Soils Sediments 10, 9–17.
45. Zvomuya, F., Rosen, C.J., Russelle, M.P. & Gupta, S.C. (2003). Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 32, 480–489.