تجزیه ارتباط برای مقاومت به بیماری پوسیدگی اسکلروتینیایی یقه ساقه در آفتابگردان (Helianthus annuus L.) با استفاده از نشانگرهای رتروترنسپوزونی REMAP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق پسادکتری، گروه اصلاح و بیوتکنولوژی گیاهی، دانشگاه ارومیه، ارومیه. محقق پسادکتری، بنیاد ملی نخبگان، تهران.

2 استاد، گروه اصلاح و بیوتکنولوژی گیاهی، دانشگاه ارومیه، ارومیه. استاد، پژوهشکده زیست فناوری دانشگاه ارومیه، ارومیه.

3 دانش آموخته کارشناسی ارشد، گروه اصلاح و بیوتکنولوژی گیاهی، دانشگاه ارومیه، ارومیه.

4 استادیار، گروه گیاهپزشکی، دانشگاه ارومیه، ارومیه.

چکیده

آفتابگردان یک محصول مهم زراعی می‌باشد که روغن آن ارزش غذایی و اقتصادی بالایی دارد. اسکلروتینیا از بیماری‌های قارچی مهم آفتابگردان می‌باشد که باعث کاهش رشد و عملکرد محصول می‌شود. در پژوهش حاضر واکنش 100 لاین خالص آفتابگردان روغنی به 6 جدایه قارچ اسکلروتینیا مورد بررسی قرار گرفت. برای شناسایی مکان‌های ژنی پیوسته با مقاومت به بیماری از 120 جایگاه ژنومی تکثیر شده توسط آغازگرهای رتروترنسپوزونی REMAP استفاده شد. نتایج نشان داد که برخی ژنوتیپ‌های آفتابگردان مقاومت خوبی به بیماری اسکلروتینیا دارند. ژنوتیپ 8A×/LC1064C کمترین درصد آلودگی را در پاسخ به دو جدایه قارچیA37 (S. sclerotiorum) و M1 (S. minor) از دو گونه مختلف قارچ اسکلروتینیا نشان داد. در تجزیه ساختار جمعیت با نرم‌افزارStructure ، 4 زیرجمعیت احتمالی شناسایی شد. در تجزیه ارتباط با نرم‌افزارTASEEL به دو روشGLM وMLM ، به ترتیب 9 و 8 مکان ژنی شناسایی شد که ارتباط معنی‌داری (P≤0.01) با ژ‌ن‌های کنترل‌ کننده مقاومت به بیماری دارند. طبق نتایج، نشانگرهای CF-UBC826، 1061LTR-UBC818 و 1061LTR-UBC857 با ژن‌های کنترل کننده مقاومت به دو جدایه‌ قارچ عامل بیماری پیوسته بودند. نشانگرهای شناسایی شده در این تحقیق، در صورت تایید و تبدیل به نشانگر SCAR می توانند بطور موثری در برنامه‌های گزینش به کمک نشانگر و تولید ارقام مقاوم به بیماری اسکلروتینیا مورد استفاده قرار بگیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Associated analyses for resistance to sclerotinia stem rot disease in sunflower (Helianthus annuus L.) using retrotransposon-based (REMAP) markers

چکیده [English]

Sunflower is an important crop that its oil has nutritional and high economic value. Sclerotinia is important fungal disease of sunflower that reduces its growth and yield. In this study, the reaction of 100 oily sunflower lines was studied to 6 fungal isolate of sclerotinia disease. Identification of gene loci related to resistance for disease was done with 120 retrotransposon-based primers (REMAP) locus. The results showed that some sunflower genotypes had the good resistant to sclerotinia disease. 8A×/LC1064C genotype showed low necrosis percentage against two A37 (S. sclerotiorum) and M1 (S. minor) isolates. In population structure analysis, 4 subpopulations were identified (K=4) using STRUCTURE software. As well as in associated analysis based on general and mixed linear models (GLM and MLM) using TASEEL software, 9 and 8 loci were identified respectively that are significant association (P≤0.01) with resistant genes that related to sclerotinia. According to the results, CF-UBC826, 1061LTR-UBC818 and 1061LTR-UBC857 markers were commonly related to the resistant genes to some fungal isolate. Identified markers after validation and tranfering to SCAR markers can be used important in sunflower breeding programs for marker-assisted selection (MAS) and developing resistant cultivars to sclerotinia disease.

کلیدواژه‌ها [English]

  • Association mapping (AM)
  • Molecular markers
  • Oily sunflower
  • Quantitative resistance
  • Sclerotinia basal stem rot
Abrinbana, M., Mozafari, J., Shams-bakhsh, M. & Mehrabi, R. (2012). Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica, 186,
75-90.
Amoozadeh, M., Darvishzadeh, R., Davar, R., Abdollahi Mandoulakani, B., Haddadi, P. & Basirnia, A. (2015). Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. Journal of Agricultural Science and Technology, 17, 213-226.
Basirnia, A., Darvishzadeh, R. & Abdollahi Mandoulakani, B. (2016). Retrotransposon insertional polymorphism in sunflower (Helianthus annuus L.) lines revealed by IRAP and REMAP markers. Plant Biosystems, 150(4), 641-652.
Bert, P., Jouan, F., Tourvieille de Labrouhe, D., Seere, F., Nicolas, P. & Vear, F. (2002). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theoretical and Applied Genetics, 105, 985-993.
Bert, P. F., Dechamp Guillaume, G., Serre, F., Jouan, I., Tourvieille de Labrouhe, D., Nicolas, P. & Vear, F. (2004). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 3. Characterisation of QTL involved in resistance to Sclero­tinia sclerotiorum and Phoma macdonaldi. Theoretical and Applied Genetics, 109, 865-874.
Bolton, M. D., Thomma, B. P. & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1-16.
Breseghello, F. & Sorrells, M. E. (2006). Association mapping of kernel size an milling quality
in wheat (Triticum aestivum L.) cultivars. Genetics, 172, 1165-1177.
Cardon, L. R. & Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet, 361, 598-604.
Castaño, F., Vear, F. & Tourvieille de Labrouhe, D. (1993). Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters. Euphytica, 68, 85-98.
10. Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196.
11. Cruickshank, A. W., Cooper, M. & Ryley, M. J. (2002). Peanut resistance to Sclerotinia minor and
S. sclerotiorum. Australian Journal of Agricultural Research, 53, 1105-1110.
12. Dadras, A. R. (2012). Evaluation of genetic diversity of tobacco (Nicotiana tabacum L.) cultivars using AFLP molecular markers. M. Sc. Thesis. Faculty of Agriculture Shahib Bahonar University of Kerman, Iran (In Farsi).
13. Darvishzadeh, R., Poormohammad Kiani, S., Huguet, T. & Sarrafi, A. (2008). Genetic variation and identification of molecular marker associated with partial resistance to Phoma macdonaldii in gamma-irradiation-induced mutants of sunflower. Canadian Journal Plant Pathology, 30, 106-114.
14. Darvishzadeh, R. (2012). Association of SSR markers with partial resistance to Sclerotinia sclerotiorum isolates in sunflower (Helianthus annuus L.). Australian journal of Crop Science, 6, 276-282.
15. Davar, R., Darvishzadeh, R., Majd, A., Ghosta, Y. & Sarrafi, A. (2010). QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathologia Mediterranea, 49, 330-341.
16. Emamgholi, A., Zaefizadeh, M. &Imani, A. (2015). The proteomic analysis of resistance to Sclerotinia Sclerotiorum fungus in sunflower seedling stage. Trend in Life Science, 4, 2319-5037.
17. Ershad, J. (1995). Fungi of Iran. Agricultural Research, Education and Extension Organization (AREEO) Publisher, Tehran, Iran (In Farsi).
18. Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611- 2620.
19. Food and Agriculture Organization. (2016). FAOSTAT, Crop production. Retrieved September 15, 2016, from http://www.fao.org/biodiversity.
20. Falush, D., Stephens, M. & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and cor­related allele frequencies. Genetics, 164, 1567-1587.
21. Fusari, C. M., Di-Rienzo, J. A., Troglia, C., Nishinakamasu, V., Moreno, M. V., Maringolo, C., Quiroz, F., Álvarez, D., Escande, A., Hopp, E., Heinz, R., Lia, V. V. & Paniego, N. B. (2012). Association mapping in sunflower for sclerotinia head rot resistance. BMC Plant Biology, 12, 93, Doi: 10.1186/1471-2229-12-93.
22. Gentzbittel, L., Mouzeyar, S., Badaoui, S., Mestries, E., Vear, F., Tourvieille de Labrouhe, D. & Nicolas, P. (1998). Cloning of molecular mark­ers for disease resistance in sunflower, Helianthus annuus L. Theoretical and Applied Genetics, 96, 519-525.
23. Ghavami, F., Elias, E. E., Mamidi, O., Ansari, M., Sargolzaei, T., Adhikari M., Mergoum & Kianian, S. F. (2011). Mixed model association mapping for Fusarium head blight resistance in Tunisian-derived durum wheat population. G3: Genes/Genomes/Genetics, 1, 209-218.
24. Gilmore, B., Myers, J. R. & Kean, D. (2002). Completion of testing of Phaseolus coccineus plant introductions for white mold Sclerotinia sclerotiorum resistance. Ann. Rept. Bean Improv. Coop, pp. 45. 
25. Godoy, M., Castano, F., Re, J. & Rodriguez, R. (2005). Sclerotinia resistance in sunflower genotypic variations of hybrids in three environment of Argentina. Euphytica, 145, 147-154.
26. Hahn, V. (2002). Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crop Research, 77, 153-159.
27. Hartman, G. L., Gardner, M. E., Hymowitz, T. & Naidoo, G. C. (2000). Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Crop Science, 40, 545-549.
28. Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H. E., Zhuang, J.Y., Zheng, K. L., Liu, G. F., Wang, G. C., Sidhu, J. S., Srivantaneeyakul, S., Singh, V. P., Bagali, P. G., Prasanna, H. C., McLaren, G. & Khush, G.S. (2003). Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theoretical and Applied Genetics, 107, 679-90.
29. Jannatdoust, M., Darvishzadeh, R., Ziaeifard, R., Azizi, H. & Gholinezhad, E. (2015). Association mapping for grain quality related traits in confectionery sunflower (Helianthus annuus L.) using retrotransposon markers under normal and drought stress conditions. Crop Biotechnology, 9, 15-28 (In Farsi).
30. Jun, T. H., Van, K., Kim, M. Y., Lee, S. H. &Walker, D. R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 62, 179-191.
31. Lander, E. S. & Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185-199.
32. Liu, L., Wang, L., Yao, J., Zheng, Y. & Zhao, C. (2010). Association mapping of six agronomic traits on chromosome 4A of Wheat (Triticum aestivum L.). Molecular Plant Breeding, 1, 1-10.
33. Mestries, E., Gentzbittel, L., Tourvieille de Labrouhe, D., Nicolas, P. & Vear, F. (1998). Analysis of quantita­tive trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Molecular Breeding, 4, 215-226.
34. Micic, Z., Hahn, V., Bauer, E., Scho¨ n, C.C., Knapp, J., Tang, S. & Melchinger, A. E. (2004). QTL mapping of Sclerotinia midstalk-rot resistance in sunflower. Theoretical and Applied Genetics, 109, 1474-1484.
35. Micic, Z., Hahn, V., Bauer, E., Schon, C. C. & Melchinger, A. E. (2005a). QTL mapping of resistance to Sclerotinia mid-stalk rot in RIL of sunflower population NDBLOSsel×CM625. Theoretical and Applied Genetics, 110, 1490-1498.
36. Micic, Z., Hahn, V., Bauer, E., Melchinger, A.  E., Knapp, S. J., Tang, S. & Schön, C. C. (2005b). Identification and validation of QTL for Sclerotinia mid-stalk rot resistance in sunflower by selective genotyping. Theoretical and Applied Genetics, 111, 233-242.
37. Neale, D. B. & Savolainen, O. (2004). Association genetic of complex traits in conifers. Trend
in Plant Science
, 9, 325-330.
38. Paniego, N., Heinz, R., Fernandez, P., Talia, P., Nishinakamasu, V. & Hopp, H. E. (2007). Oil seeds. In: K. Kole (Ed), Genome Mapping and Molecular Breeding in plants. (pp. 1-21) Heidelberg, Germany. Springer, Verlag.
39. Poormohammad-Kiani, S., Nouri, L., Maury, P., Darvishzadeh, R., Grieu P. & Sarrafi, A. (2008). Genetic variation and identification of molecular markers associated with osmotic adjustment-related traits in gamma irradiation-induced mutants of sunflower (Helianthus annuus L.). Journal of Genetics & Breeding, 62, 67-74.
40. Porter, L. D., Hoheisel, G. & Coffman, V. A. (2009). Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathology, 58, 52-60.
41. Price, K. & Colhoun, J. (1975). A study of variability of isolates of Sclerotinia sclerotiorum (Lib) de Bary from different hosts. Journal of phytopathology, 83, 159-166.
42. Pritchard, J. K., Stephens, M. N., Rosenberg, N. & Donnelly, P. (2000). Asso­ciation mapping in structured populations. The American Journal of Human Genetics, 67, 170-181.
43. Pritchard, J. K. & Donnelly, P. (2001). Casecontrol studies of association in structured or admixed populations. Theoretical Population Biology, 60, 227-237.
44. Rönicke, S., Hahn, V., Vogler, A. & Friedt W. (2005). Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum in sunflower (Helianthus annuus L.). Phytopathology, 95, 834-839.
45. Rostok, N., Ramsay, L., MacKenzie, K., Cardle, L. & Bhat, P. R. (2006). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. PNAS, 103, 18656-18661.
46. Roy, J. K., Bandopadhyay, R., Rustgi, S., Balyan, H. S. & Gupta, P. K. (2006). Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science-Bangalore90, 683.
47. Saeed, A., Darvishzadeh, R. & Basirnia, B. (2013). Simple sequence repeat markers associated with agro-morphological traits in chickpea (Cicer arietinum L.). Zemdirbyste-Agriculture, 100, 433-440.
48. Saeed, M., Wangzhen, G. & Tianzhen, Z. (2014). Association mapping for salinity tolerance in cotton (Gossypium hirsitum L.) germplasm from US and diverse regions of China. Australian Journal of Crop Science, 8(3), 338- 346.
49. Saharan, G. S. & Mehta, N. (2008). Economic importance, sclerotinia diseases of crop plants: biology, ecology and disease management. Springer.
50. Sahranavard Azartamar, F., Darvishzadeh, R., Ghadimzadeh, M., Azizi, H. & Aboulghasemi, Z. (2015). Identification of SSR loci related to some important agromorphological traits in different oily sunflower (Helianthus annuus L.) lines using association mapping. Crop Biotechnology, 10, 73-87 (In Farsi).
51. Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti, Z. P. & Negri, V. (2011). Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical and Applied Genetics, 122, 1281-1291.
52. Talukder, Z. I., Hulke, B. S., Qi, L., Scheffler, B. E., Pegadaraju, V., McPhee, K. & Gulya, T. J. (2014). Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs. Theoretical and Applied Genetics, 127, 193-209.
53. Tang, S., Yu, J. K., Slabaugh, M. B., Shintani, D. K. & Knapp S. J. (2002). Simple sequence repeat map of the sunflower genome. Theoretical and Applied Genetics, 105, 1124-1136.
54. Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccaferri, M. & Conti, S. (2002). Mapping QTLs regulating morphophysiological traits and yield in droughtstressed maize: case studies, shortcomings and perspectives. Annals of Botany, 89, 941-963
55. Yu, J. M. & Buckler, E. S. (2006). Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17, 155-160.
56. Yue, B., Radi, S. A., Vick, B. A., Cai, X., Tang, S., Knapp, S. J., Gulya, T. J., Miller J. F. & Hu, J. (2008). Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology, 98, 926-931.
57. Wang, M., Jiang, N., Jia, T., Leach, L., Cockram, J., Comadran, J., Shaw, P., Waugh, R. & Luo, Z. (2012). Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 124, 233-46.
58. Zhang, Q., Wu, C., Ren, F. Y. & Zhang, C. (2012). Association analysis of important agronomical traits of maize inbred lines with SSRs. AustralianJournals of Crop Science, 6, 1131-1138.