آنالیز پایداری بیان برخی از ژن‌های مرجع به منظور مطالعات بیان ژن در برنج با استفاده از Real-time PCR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه صنعتی شاهرود

2 عضو هیات علمی دانشگاه صنعتی شاهرود

3 دانشجوی دکتری

چکیده

با ابداع واکنش زنجیره‌ای پلی‌مراز در زمان واقعی تحول عظیمی در زمینه تجزیه بیان ژن در موجودات زنده ایجاد شد، چراکه یکی از روش‌های مناسب برای ارزیابی میزان بیان ژن‌ها محسوب می‌گردد. در این روش، برای ارزیابی دقیق بیان ژن کنترل خطا بین نمونه‌ها ضروری می‌باشد. روشی که به صورت گسترده برای کنترل خطا مورد استفاده قرار می‌گیرد، نرمال کردن سطوح RNA با یک ژن مرجع یا خانه‌دار می‌باشد. این مطالعه به منظور بررسی کارایی10 ژن خانه‌دار در گیاه برنج در شرایط تنش شوری انجام شد. تیمار شوری صفر و 300 میلی‌مولار بعد از گذشت 8 هفته از رشد گیاهان اعمال گردید. همچنین در زمان‌های صفر، 6، 12، 24، 48 و 72 ساعت پس از اعمال تیمار شوری، از اندام‌های ریشه و برگ نمونه‌گیری صورت گرفت. نتایج حاصل از تجزیه و تحلیل داده‌ها با استفاده از نرم افزار geNorm نشان داد که ژن‌های eIF-4a و ACT7 در بافت ریشه و ژن‌های GAPDH و ACT11 در بافت برگ به عنوان پایدارترین ژن‌های مرجع می‌توانند در نرمال‌سازی مطالعات بیان ژن مورد استفاده قرار بگیرند. بر اساس آماره توصیفی در برنامه BestKeeper ژن eIF-4a در اندام ریشه و ژن‌های UBQ10 و eIF-4a در اندام برگ دارای بیشترین همبستگی با شاخص BestKeeper (به ترتیب 885/0، 891/0و 886/0) می‌باشد. در مجموع نتایج این تحقیق نشان داد که ژن‌های eIF-4a، ACT7، UBQ10 ، GAPDH و ACT11 می‌توانند به عنوان ژن‌های مرجع مناسب در گیاه برنج به منظور نرمال‌سازی داده‌های بیانی مورد استفاده قرار بگیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the stability of housekeeping genes expression for studying gene expression in rice using by Real-time PCR

نویسندگان [English]

  • Mohammad Reza Amerian 2
  • Arman Beyraghdar Kashkooli 3
1
2 academic staff
3 Ph.D student
چکیده [English]

A significant progress has been made in the expression profiling of living organism with invention of real time PCR, because this method is one of the suitable methods for evaluating the expression of genes. In this method, it is crucial to control the error observed between samples. Normalization with a house keeping gene is widely utilized to check the errors observed among samples in this method. In the current study, we evaluated expression patterns of 10 housekeeping genes under salinity stresses. We treated the eight- week old plants under salinity stress at concentrations of 0 and 300 Mm. Samples of leaves and roots were collected from the treated plants at 0, 12, 24, 48 and 72 hour post treatment. Expression analysis of the obtained data was performed via geNorm software and it was shown that the eIF-4a as well as ACT7 genes in the root tissues and GAPDH and ACT11 in the leaf tissues was constitutively expressed. Based on the results gained from the analysis trough Best Keeper, the eIF-4a gene (in root) and UBQ10 and eIF-4a (in leaf) showed the highest correlation with the index of Best keeper. Thus, we concluded that the eIF-4a, ACT7, GAPDH, UBQ10 and ACT11 genes could be considered as suitable housekeeping genes to be used in the normalization of the derived from Rice.

کلیدواژه‌ها [English]

  • Oryza sativa
  • Real time PCR
  • Salinity stress
  • Reference gene and BestKeeper
  1. Akbarzadeh, A., Farahmand, H., Mahjoubi, F., Nematollahi, M. A., Haghben, K. & Kolangi Miandareh, H. (2013). Selection of suitable reference genes for real-time PCR studies of early developmental stages of sturgeons. Journal of Aquatic Ecology, 2 (3), 1-13. In farsi.
  2. Bevitori, R., Oliveira, M. B., Grossi-de-Sá, M. F., Lanna, A. C., Da Silveira, R. D. & Petrofeza, S. (2014). Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genetics and Molecular Research, 13 (4), 9795-9805.
  3. Bohnert, H. J., Ayoubi, P., Borchert, C., Bressan, R. A., Burnap, R. L., Cushman, J. C., Cushman, M. A., Deyholos, M., Fischer, R., Galbraith, D. W. & Hasegawa, P. M. (2001). A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 39(3-4), 295-311.
  4. Cao, J., Wang, L. & Lan, H. (2016). Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy. The Journal of Life and Environmental Sciences, 4, 1697.
  5. Chinnusamy, V., Jagendorf, A. &  Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.
  6. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K. & Scheible, W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139, 5–17.
  7. Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G. & Zumla, A. (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37,112-119.
  8. Esmaili, R., Majidzadeh Ardabili, K. & Abdoli, N. (2010). Proper quantification of UPA in breast canser: Housekeeping selection. Iranian Journal of Breast Disease, 3, 7-15. In farsi.
  9. Fang, P., Lu, R., Sun, F., Lan, Y., Shen, W., Du, L., Zhou, Y. & Zhou, T. (2015). Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR. Virology Journal, 12 (175), 1-11.

10. Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J., Fischhoff, D. A., Hodges, C. N., Knauf, V. C., Lobell, D., Mazur, B. J., Molden, D., Reynolds, M. P., Ronald, P. C., Rosegrant, M. W., Sanchez, P. A., Vonshak, A. &  Zhu, J. K. (2010). Radically rethinking agriculture for the 21st century. Science, pp, 833-834.

11. Garson, J., Grant, P., Ayliffe, U., Ferns, R. B. & Tedder, R. S. )2005). Real-time PCR quantitation of hepatitis B virus DNA using automated sample preparation and murine cytomegalovirus internal control. Journal of virological methods, 126 (1–2), 207-213.

12. Gholamnezhad, J., Sanjarian, F., Mohammadi Goltapeh, E., Safaei, N. & Razavi, K. (2016). Evaluation of housekeeping gene expression of wheat interaction against Mycosphaerella graminicola with Reverse northern dot blot method. Crop Biotechnology Journal, 12, 1-10. In farsi.

13. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C. & Van Wuytswinkel, O. (2008). Towards a systematic validation of references in real-time RT-PCR. Plant Cell, 20,1734–1735.

14. Jain, M., Nijhawan, A., Tyagi, A. K. & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345, 646–651.

15. Jian, B., Liu, B., Yurong, B., Wensheng, H., Cunxiang, W. & Tianfu, H. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9,59.

16. Jian-Feng, Sh., Jun-Min, L., Li-Ying, U. & Jian-Ping, Ch. (2014). Reference gene selection for real-time fluorescence quantitative PCR analysis in rice plants infected by Rice black-streaked dwarf virus or Rice stripe virus. Acta Phytopathological Sinica, 44 (3), 276-286.

17. Kim, B. R., Nam, H. Y., Kim, S. U., Kim, S. I. & Chang, Y. J. (2003). Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Letters, 25 (21), 1869–1872.

18. Lee, P. D., Sladek, R., Greenwood, C. M. & Hudson, T. J. (2002). Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies, Genome Research, 12, 292–297.

19. Munns, R. (1993). Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environment, 16, 15-24.

20. Narsai, R., Ivanova, A., Ng, S. & Whelan, J. (2010). Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biology,10 (1), 56.

21. Omar, S. C., Bentley, M. A., Morieri, G., Preston, G. M. & Gurr, S. J. (2016). Validation of reference genes for robust qRT-PCR gene expression analysis in the rice blast fungus Magnaporthe oryzae. Plos One, 11(8), e0160637.

22. Pettengill, A. E., Parmentier-Line, C. & Coleman, G. D. (2012). Evaluation of qPCR reference genes in two genotypes of Populus for use in photoperiod and low-temperature studies. BMC Research Notes, 5, 366.

23. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology  Letters, 26, 509–515.

24. Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., Molina-Montenegro, M. A., Biondi, S. & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49, 1333-1341.

25. Shakeri1, S., Kazemitabar, S.K. & Hashemi, S. H. R. (2015). Study of Reference Genes in Sesame Leaves under Salt Stress by Real-Time PCR Method. Crop Biotechnilogy Journal, 8, 1-10. In farsi.

26. Suzuki, T., Higgins, P. J. & Crawford, D. R. (2000). Control selection for RNA quantitation. Biotechniques, 29, 332–337.

27. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R. & Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Science, 165(6), 1411-1418.

28. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, RESEARCH0034.

29. Xu, H., Bao, J. D., Dai, J. S., Li, Y.  & Zhu, Y. (2015). Genome-Wide Identification of New Reference Genes for qRT-PCR Normalization under High Temperature Stress in Rice Endosperm. Plos ONE,10 (11), 1-13.

  1. Zouari, N., Ben Saad, R., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K. & Hassairi, A. (2007). Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene, 404, 61–69.