بررسی تاثیر رابطه همزیستی میکوریز آربسکولار بر جذب عناصر معدنی گیاه گندم رقم پیشتاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی/ موسسه تحقیقات خاک و آب

2 کارشناس ارشد بخش تحقیقات بیولوزی خاک/ موسسه تحقیقات خاک و آب

3 کارشناس ارشد / موسسه تحقیقات خاک و آب

چکیده

به منظور بررسی تاثیر رابطه همزیستی میکوریزی بر جذب عناصر معدنی توسط گندم، آزمون گلخانه‌ای با یازده تیمار قارچی شامل دو سویه از گونه glomus mossea، دو سویه از گونه G. intraradices، دو سویه از گونه G . clarum، یک سویه از گونه G. etanicatum، یک سویه از گونه G. caledonium، یک سویه از گونه G. claroideum، یک تیمار شاهد بدون قارچ و یک تیمار مخلوط از گونه‌های فوق با جمعیت برابر با سه تکرار و در قالب طرح کاملا تصادفی در گلخانه بخش تحقیقات بیولوژی خاک در پاییز 1393به اجرا درآمد.
نتایج این تحقیق نشان داد که درصد کلونیزاسیون ریشه با افزایش معنی‌داری در سطح احتمال 1 درصد، در زمان برداشت گیاه گندم به حدود 50 درصد سیستم ریشه‌ای رسید. بیشترین وزن خشک اندام هوایی در تیمار T7 (Glomus claroideum) با مقدار عددی 89/11 گرم مشاهده شد. همزیست شدن ریشه گیاه گندم با قارچ، جذب عناصر فسفر، پتاسیم و روی و همچنین افزایش وزن خشک اندام هوایی را در سطح احتمال پنج درصد در این تحقیق نمایان ساخت. بالاترین میزان جذب فسفر در تیمار T4 (Glomus intraradices) با مقدار عددی 9/29 میلی‌گرم، بالاترین میزان جذب پتاسیم به ترتیب در تیمارهایT7 (Glomus claroideum) و T11 (Mix مخلوطی از تمامی گونه‌ها با جمعیت برابر)، با مقدار عددی 95/175 و 41/173 میلی‌گرم در گلدان، و بالاترین میزان جذب روی در تیمار T11(Mix) با مقدار عددی 947/0 میلی‌گرم در گلدان مشاهده گردید. در بسیاری از شاخص‌های اندازه‌گیری شده، تیمار T11 (تیمار Mix)، نتیجه بهتری در پی داشت

کلیدواژه‌ها


عنوان مقاله [English]

Effect of symbiosis interaction of Mycorrhizae Arbuscular on mineral uptake in wheat ( Pishtaz cultivar)

چکیده [English]

In order to study the effect of symbiosis interaction of Mycorrhizae Arbuscular on mineral uptake in wheat ( Pishtaz cultivar), a greenhouse test with 11 treatments (2 species of Glomus mossea, 2 species of G. intraradices, 2 species of G. clarum, 1 species of G. etanicatum, 1 species of G. caledonium, 1 species of G. claroideum, 1 control treatment without mycorrhiza inoculation, a mix treatment with different species was done in greenhouse of biology department of Soil and Water Research Institute in completely randomized design.
Result showed that root colonization percentage was significantly (1% probability) increased in harvest time of wheat and reached to 50% of root system. Maximum shoot dry weight was in T7 (G. claroideum) and it was 11.89 g per pot. Wheat root symbiosis with fungi, increased uptake of P, K, Zn and shoot dry weight (5% probability). Maximum P uptake was in T4 (G. intraradices) and it was 29.9 mg per pot. Maximum K uptakes were in T7 (G. claroideum) and T11 (mix treatment with different species), they were 175.95 and 173.41 mg per pot respectfully. Maximum Zn uptake was in T11 and it was 0.947 mg per pot. T11 had better results in most of measured parameters comparing to other treatments.

کلیدواژه‌ها [English]

  • Mineral nutrition
  • Root colonization
  • Mycorrhiza
  • shoot dry weight
Al-Karaki, G. N., Al-Raddad, A., & Clark, R. B. (1998). Water stress and mycorrhizal isolates effects on growth and nutrient acquisition of wheat. Journal of Plant Nutrition. 21, 891-902.
Al-Karaki, G. N., & Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza,7, 83-88.
Al-Karaki, G. N., & Clark, R. B. (1999). Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition, 21, 263-276.
Al-Karaki, G. N., McMichael, B. & Zak. J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress, Mycorrhiza, 14, 263-269
Baker, D. E., & Amachar, M. C. (1982). Nickel, copper, zinc and cadmium. In: Page A. L., Miller, R. H., Keeney, D. R., editors. Methods of soil analysis, part 2. Madison. American Society of Agronomy, 323–338.
Bethlenfalvay, G. J., Franson R. L., Brownand, M. S. & Mibara, K. L. (1989). The Glycne-Glomus-Bradyrhizobium symbiosis, IX: Nutritional, morphological and physiological responses of nodulated soybean to geopgraphic isolates of the mycorrhizal fungus, Glomus mosseae. Physilogia Plantarum, 76, 226-232.
Chen, B., Christie, P. & Li, X. (2001). A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza.Chemosphere, 42, 185-192.
Clark, R. B., & Zeto, S. K. (1996). Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry, 28, 1405-1503.
Cruse, C.,Green, J. J.,Watson, C. A. & Wilson, F. (2004). Functional aspects of root architecture  and mycorrhizal inoculation with respect to nutrient uptake capacity.Mycorrhiza, 14, 177-184.
10. Emami, A. (1996). Methods of chemical analysis of plant. Technical publication, Soil and Water Research Institute, Tehran, 982 (1). (In Farsi). 
11. Fahramand, M., Adibian, M., Sobhkhizi, A., Noori, M., Moradi, H., & Rigi, Kh. (2014).  Effect of arbuscular mycorrhiza fungi in agronomy. Journal of Novel Applied Sciences, 3 (4), 400-404.
12. Fall1, F., Diouf, D., Fall, D., Ndoye, I., Ndiaye, Ch., Kane, A., & Mustapha Bâ, A. (2015).  Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions. African Journal of Biotechnology, 14 (39), 2770-2776.
13. Fang, Y. C., McGraw, A. C., Hakam, M., & Hendrix, J. M. (1983). A procedure for isolating single-spore cultures of ertain endomycorrhizal fungi. New Phytology,  93, 107-114
14. Garcia., K. & Zimmermann., S. (2014). The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 5, Article 337.
15. Gee, G. W. & Bauder, J. W. (1986). Particle-size analysis. In: Klute A(ed) Methods of soil Analysis, Part 1. 2 ed., Agronomy Monograps. American Society of Agronomy and Soil science Society,  9, 383-411.
16. Gerdemann, J. W., Nicolson, T. H. (1963). Spores of mycorrhizal Endogone extracted from soil by wet-sieving and decanting. Transactions of the British Mycological Society, 46, 235-244.
17. Goh, T. B., Banerjee, M. R., Shihua, T. & Burton, D. L. (1997). Vesicular-arbuscular mycorrhizae mediated uptake and translocation of P and Zn by wheat in a calcareous soil. Canadian Journal of Plant Science, 77, 339-346.
18. Halder, M., Mujib, A. S. M,  Shahjalal Khan, M., Chandra Joardar, J., Akhter, S. & Dhar, P. P. (2015). Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Up take of Mineral Nutrition in Ipomoea Aquatica. Current World Environment, 10(1), 67-75.
19. Hogland, D. R. & Arnon, D. I. (1950). The Water Culture Method for Growing Plants Without Soil. Circular California Agricultural Experiment Station, 39-347.
20. Jakobsen, I. (1995). Transport of phosphorus and carbon in VA mycorrhiza In: Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology. A. Varma and B. Hock (eds). Springer – Verlag. Berlin. 297-324.
21. Kaur, R.,  Singh, A., & Kang, J. S. (2014). Influence of Different Types Mycorrhizal Fungi on Crop Productivity. Current Agriculture Research Journal, 2(1), 51-54.

22. Khade, S. W. & Rodrigues, B. F. (2009). Studies on Effects of Arbuscular Mycorrhizal (Am.) Fungi on Mineral Nutrition of Carica papaya L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca Journal,  37(1), 183-186.

23. Knudsen, D., Peterson, G. A. & Pratt, P. F. (1982). Lithium, sodium, and potassium. In A. L. Page, R. H. Miller, and D. R. Keeney, editors. Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA, 225–246.
24. Kothari, S. K., Marschner, H. & Romheld, V. (1991). Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant and Soil, 131, 177-185.
25. Kothari, S. K., Marschner, H., & Romheld, V. (1990). Effect of vesicular arbuscular mycorrhizal fungi and rhizosphere microorganisms on manganese reduction in the rhizophere and manganese concentration in maze. New Phytologist, 117, 649-655.
26. Kothari, S. K., Marschner, H. &  Romheld, V. (1991). Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil. 131, 177-185
27. Kucey, R. M. N. & Janzen, H. H. (1987). Effect of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under green house. Plant and Soil, 104,  71-78.
28. Marschner, H. & Dell. B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, pp. 89-102.
29. Marschner. H. (1998). Role of root growth, arbuscular mycorrhiza and root exudates for the efficiency in nutrient acquisition. Field Crops Research, 56, 203-207.
30. Martin, C. A and Stutz, J. C. (2004). Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 14, 241-244.
31. Mohammad, M. J., Pan, W. L. & Kennedy, A. C. (2005). Chemical alteration of the rhizosphere of the mycorrhizal colonized wheat root. Mycorrhiza, 15, 259-266.
32. Nelson, D. W & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: page AL, Miller RH, Keenney DR (eds) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy, Madison, Wisconsin, 539-573.
33. Olsen, R. S. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture, p.939.
34. Pacovsky, R. S., & Fuller, G. (1988). Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbiosis. Physiologica plantarum, 72, 733-746.
35. Page, A. L., Miller, R. H. & Keeney D. R, eds. (1982). Method of Soil Analysis. Part2. Chemical and Microbial properties. American Society Agronomy Series. ASA.SSSA. Madison, 1159 pp.
36. Raju, P. S., Clark, R. B., Ellis, J. R. & Maranville, J. W. (1990). Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperature. Plant and Soil, 121, 165-170.
37. Rhoades, J. D. (1982). Cation exchange capacity.  in A. L. Page, R. H. Miller, and D. R. Keeney, editors. Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA, 149–158.
38. Saggin, O. J., & Siqueira, J. O. (1995). Evaluation of the symbiotic effectiveness of endomycorrhizal fungi for coffee tree. Brazil Gournal of Soil Science. 19, 221-228
39. Sharma, A. K. & Johri, B. N. (eds.). (2002). Arbuscular Mycorrhizae, Interaction in Plants, Rhizosphere and Soils. Oxford and IBH Publishing. New Delhi. P. 308.
40. Singh, J. P., Karamanous, R. E. & Stewart, J. W. B.  (1986).  Phosphorus-induced zinc deficiency in wheat on residual phosphorus
 
41. plots. Agronomy Journal, 78, 668-675.
42. Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. Academic Press. P. 587.
43. Van der Heijden, M. G. A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., Boller, T., Wiemken, A. & Sanders,  I. R. (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytology, 172, 739-752.
44. Wang, L., Wu, J., Ma, F., Yang, J., Li, Sh.Li, Z. & Zhang, X. (2015). Response of Arbuscular Mycorrhizal Fungi to Hydrologic Gradients in the Rhizosphere of Phragmites australis (Cav.) Trin ex. Steudel Growing in the Sun Island Wetland. BioMed Research International, 2015, Article ID 810124, http://dx.doi.org/10.1155/2015/810124, 9 p.