بررسی روابط متقابل میان صفات در ژنوتیپ‌های گندم با استفاده از روش بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تربیت مدرس

2 دانشگاه تربیت مدرس

3 عضو هیئت علمی- مموسسه تحقیقات اصلاح و تهیه نهال وبذر، سازمان تحقیقات ، اموزش و ترویج کشاورزی ، کرج، ایران

4 دانشگاه لرستان

چکیده

تنش شوری یکی از تنش‌های غیرزنده مهم در مناطق خشک و نیمه‌خشک از جمله ایران می‌باشد. تنوع بالایی میان ژنوتیپ‌های گندم نان ایرانی از نظر تحمل به شوری مشاهده شده است. در این تحقیق برای مطالعه روابط متقابل میان صفات مختلف و همچنین ارزیابی عملکرد ژنوتیپ‌های‌گندم از روش بای‌پلات استفاده شد. در این مطالعه 110 ژنوتیپ گندم نان در مزرعه تحقیقاتی مرکز ملی تحقیقات شوری، در دو شرایط بدون تنش و تنش شوری مورد ارزیابی قرار گرفتند. شوری آب آبیاری در شرایط بدون تنش و تنش شوری به ترتیب 2 و 10 دسی‌زیمنس بر متر بود. نتایج نشان داد که عملکرد بیولوژیک و شاخص برداشت همبستگی مثبت بالایی با عملکرد دانه در هر دو شرایط بدون تنش و تنش شوری داشتند. بنابراین بنظر می‌رسد که عملکرد بیولوژیک و شاخص برداشت می‌توانند بعنوان معیارهای مناسب برای انتخاب ژنوتیپ‌های با عملکرد بالا در شرایط بدون تنش و تنش شوری مورد استفاده قرار گیرند. در این تحقیق در بین 110 ژنوتیپ گندم نان مورد بررسی، لاین‌های امیدبخش پیشرفته Salt22، Salt29 و Salt30 بعنوان متحمل‌ترین ژنوتیپ‌ها به تنش شوری شناسایی شدند که می‌توان می‌توان در مناطق شور و بعنوان والدین برای بهبود ژرم‌پلاسم گندم برای تحمل به شوری در برنامه‌های اصلاحی استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study on trait relations of wheat genotypes using the Biplot method

چکیده [English]

Salinity stress is one of the major abiotic stresses in arid and semi-arid regions of the world, such as Iran. High genetic diversity for salinity tolerance has been observed in Iranian bread wheat genotypes. In this study to finding interrelationships between different traits and performance evaluation of wheat genotypes was used biplot method. In this study, 110 bread wheat genotypes were evaluated in two conditions (non-stress and saline stress) at the research field of the National Salinity Research Center (NSRC). The salinity of water used in irrigation in saline and non-stress conditions was 10 and 2 dS.m-1 respectively. The results revealed that there was a strong positive association between biological yield and harvest index with seed yield in both non-stress and saline conditions. Therefore, it seems that biological yield and harvest index could be used as a suitable criterion in selecting for increased seed yield in wheat in both non-saline and saline conditions. In this research among 110 studied bread wheat genotypes, promising advanced lines Salt22, Salt29 and Salt30 were identified as the most salinity-tolerant genotypes that these lines can be utilized for salt-affected areas and as donor parents in wheat breeding programs for further improvement of germplasm for salinity tolerance.

کلیدواژه‌ها [English]

  • Biplot
  • Correlation
  • salinity
  • Wheat
  • yield
Akbarpour, O. A., Dehghani, H., Rousta, M. J. & Amini, A. (2015a). Evaluation of some properties of Iranian wheat genotypes in normal and salt-stressed conditions using Restricted Maximum Likelihood (REML). Iranian Journal of Crop Sciences, 46, 57-69. (In Farsi).
Akbarpour, O. A., Dehghani, H. & Rousta, M. J. (2015b). Evaluation of salt stress of Iranian wheat germplasm under field conditions. Crop Pasture Science, 66, 770-781.
Amini, A., Amirnia, R. & Qazvini, H. (2015). Evaluation of salinity tolerance in bread wheat genotypes under field conditions. Seed and Plant Improvement Journal, 31, 95-115. (In Farsi).
Ashraf, M. & Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16.
Aycicek, M. & Yildirim, T. (2006). Path coefficient analysis of yield and yield components in bread wheat (Triticum aestivum L.) genotypes. Pakistan Journal of Botany, 38, 417-423.
Brandle, J. & McVetty, P. (1989). Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Science, 29, 1191-1194.
Dabiri, M., Bahramnejad, M. & Baghbanzadeh, M. (2009). Ammonium salt catalyzed multicomponent transformation: simple route to functionalized spirochromenes and spiroacridines. Tetrahedron, 65, 9443-9447.
Darvishzadeh, R., Pirzad, A., Bernousi, I., Abdollahi Mandoulakani, B., Azizi, H., Akhondi, N., Poormohammad Kiani, S. & Sarrafi, A. (2011). Genetic properties of drought tolerance indices in sunflower. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 61, 593-601.
Darvishzadeh, R., Pirzad, A., Hatami-Maleki, H., Poormohammad-Kiani, S. & Sarrafi, A. (2010). Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research, 8, 1037-1046.
10. Dehghani, H., Dvorak, J. & Sabaghnia, N. (2012a). Biplot analysis of salinity related traits in beard wheat (Triticum aestivum L.). Annals of Biological Research, 3: 3723-3731.
11. Dehghani, H., Dvorak, J. & Sabaghnia, N. (2012b). Graphic analysis of biomass and seed yield of beard wheat in salt stress condition. Annals of Biological Research, 3 (9):4246-4253.
12. Dehghani, H., Omidi, H. & Sabaghnia, N. (2008). Graphic analysis of trait relations of rapeseed using the biplot method. Agronomy Journal, 100, 1443-1449.
13. Dofing, S. & Knight, C. (1992). Alternative model for path analysis of small-grain yield. Crop Science, 32, 487-489.
14. Donald, C. & Hamblin, J. (1976). The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, 28, 361-405.
15. Duhoon, S. S., Chandra, S., Basu, A. K. & Makhija, O. P. (1982). Components of genetic variation for yield & its attributes in a diallel cross of yellow-seeded Indian colza. Indian Journal of Agricultural Science, 52, 154-158.
16. GGEbiplot. (2011). A statistical package. Ottawa, ON., Canada.
17. Falconer, D. S., Mackay, T. F. C. & Frankham, R. (1996). Introduction to Quantitative Genetics (4th edn). Longman, Harlow, UK.
18. FAO. (2005). Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy: FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush.
19. Fernandez, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. Proc Intnl Symp Adaptation of Vegetables and Other Food Crops in Temperature & Water Stress. AVRDC Publ, Tainan, Taiwan, 13-18 August. pp. 257-27.
20. Gholizadeh, A. & Dehghani, H. (2016). Graphic analysis of trait relations of Iranian bread wheat germplasm under non-saline and saline conditions using the biplot method. Genetika, 48, 473-486.
21. Gholizadeh, A., Dehghani, H. & Dvorak, J. (2014). Evaluating salt tolerance of bread wheat genotypes using stress tolerance indices. Cereal Research, 4, 103-114.
22. Golparvar, A. R., Ghanadha, M. R., Zali, A. A. & Ahmadi, A. (2002). Evaluation of morphological traits as selection criteria in breeding of wheat. Iranian Journal of Crop Sciences 4, 202-205. (In Persian).
23. Hassan, G. & GUL, R. (2006). Diallel analysis of the inheritance pattern of agronomic traits of bread wheat. Pakistan Journal of Botany, 38, 1169-1175.
24. Houshmand, S., Arzani, A., Maibody, S. A. M. & Feizi, M. (2005). Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Research, 91, 345-354.
25. Joseph, J. & Santhosh Kumar, A.(1999). Character association and cause effect analysis in some F2 population of green gram. Legume Research, 22, 99-103.
26. Kearsey, M. J. & Pooni, H. S.(1996). The genetic analysis of quantitative traits. . Stanley Thornes Ltd., Cheltenham, Great Britain
27. Kulshrestha, V. & Jain, H. (1982). Eighty years of wheat breeding in India: Past selection pressures & future prospects. Journal of Plant Breeding,89, 19-30.
28. Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62(318), 399-402.
29. Mardeh, A. S. S., Ahmadi, A., Poustini, K. & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, 222-229.
30. Martin, P., Ambrose, M. & Koebner, R. (1994). A wheat germplasm survey uncovers salt tolerance in genotypes not exposed to salt stress in the course of their selection. Aspects of Applied Biology, 39, 215-222.
31. Munns, R., James, R. A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043.
32. Ober, E. S., Clark, C. J., Le Bloa, M., Royal, A., Jaggard, K. W. & Pidgeon, J. D. (2004). Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under drought and irrigated conditions. Field Crops Research, 90, 213-234.
33. Okoye, M., Okwuagwu, C., Uguru, M., Ataga, C. & Okolo, E. (2007). Genotype by trait relations of oil yield in oil palm (Elaeis guineensis Jacq.) based on GT biplot. 8th African Crop Science Society Conference, El-Minia, Egypt, 27-31 October pp. 723-728.
34. Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S. & O’Toole, J. (2002). Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components. Field Crops Research, 73, 153-168.
35. Pheloung, P. & Siddique, K. (1991). Contribution of stem dry matter to grain yield in wheat cultivars. Functional Plant Biology, 18, 53-64.
36. Ravari, S. Z., Dehghani, H. & Naghavi, H. (2016). Assessing salinity tolerance of bread wheat varieties using tolerance indices based on K+/Na+ ratio of flag leaf. Cereal Research, 6, 133-144. (In Farsi).
37. Rezvani Moghaddam, P. & Koocheki, A. (2001). Research history on salt affected lands of Iran: Present and future prospects-Halophytic ecosystem. International Symposium on Prospects of Saline Agriculture in the GCC countries, Dubai, UAE.
38. Richards, R., Dennett, C., Qualset, C., Epstein, E., Norlyn, J. & Winslow, M. (1987). Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Research, 15, 277-287.
39. Rubio, J., Cubero, J., Martin, L., Suso, M. & Flores, F. (2004). Biplot analysis of trait relations of white lupin in Spain. Euphytica, 135, 217-224.
40. Sabaghnia, N., Dehghani, H. & Sabaghpour, S. H. (2008). Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agronomy Journal, 100, 760-764.
41. Saberi, M. H., Amini, A., Samadzadeh, A. R. & Tajali, H. (2013). Evaluation of some wheat genotypes under salt stress under field conditions. Journal of Environmental Stress in Crop Science, 6, 77-85. (In Farsi).
42. Saboora, A., Kiarostami, K., Behroozbayati, F. & Hajihashemi, S. (2006). Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Sciences, 9, 2009-2021.
43. Shahbazi, M., Kalateh-Arabi, M. & Hassanifar, A. M. (2015). Study of Iranian wheat in saline soils of Golestan province. Iranian Journal of Crop Sciences, 41, 447-458. (In Farsi).
44. Shannon, M. C. (1997). Adaptation of plants to salinity. Advances in Agronomy, 60, 75-120.
45. Singh, S. & Singh, T. (2001). Correlation and path analysis in common wheat (Triticum aestivum L.) under light texture soil. Resources on Crops, 2, 99-101.
46. Sio-Se Mardeh, A., Ahmadi, A., Poustini, K. & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, 222-229.
47. Snyder, F. & Carlson, G. (1984). Selecting for partitioning of photosynthetic products in crops. Advances in Agronomy, 37, 47-72.
48. SPSS, Insitute. (2010). SPSS 19. Users Guied. Chicago, IL., USA
49. Yan, W. & Frégeau-Reid, J. (2008). Breeding line selection based on multiple traits. Crop Science, 48, 417-423.
50. Yan, W. & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42, 11-20.
51. Yan, W., & Kang, M.S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL. 273p.
52. Yan, W., Hunt, L., Sheng, Q. & Szlavnics, Z. (2000). Cultivar evaluation & mega-environment investigation based on the GGE biplot. Crop Science, 40, 597-605.
53. Yin, X., Chasalow, S., Stam, P., Kropff, M., Dourleijn, C., Bos, I. & Bindraban, P. (2002). Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley. Plant Breeding, 121, 314-319.