اثر دما، موقعیت و پوشش بذر بر جوانه‌زنی جمعیت‌های یولاف‌وحشیAvena ludoviciana

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری علوم علف های هرز

2 سایر

چکیده

یولاف وحشی به دلیل وجود خواب در بذور خود می‌تواند به مدت طولانی در خاک حضور داشته باشد. عواملی از قبیل دما، موقعیت و پوشش بذر قادر به تغییر در جوانه‌زنی بذور می‌باشند. به منظور بررسی نحوۀ پاسخ‌دهی بذور یولاف‌وحشی نسبت به دما، موقعیت و پوستۀ بذر دو آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در آزمایشگاه دانشگاه تهران، اجرا گردید. تیمارهای آزمایشی شامل جایگاه بذر در سنبلچه (دانۀ پایه بزرگتر و دانۀ فوقانی کوچکتر)، دما (5، 10، 15، 20، 25، 30 و 35 ) بودند. پاسخ سرعت جوانه‏زنی به دما با استفاده از مدل سه پارامترۀ سیگموئیدی استفاده شد. نتایج حاکی از این بود که کمترین درصد و سرعت جوانه‌زنی در بذور بدون پوشش بزرگ و کوچک در میان جمعیت‌ها در جمعیت یولاف‌وحشی قائم‌شهر با کمترین وزن بذر دیده شد. لازم به ذکر است که بذر بزرگتر بدون پوشش جمعیت یولاف‌وحشی قائم‌شهر در تمامی دماهای مورد بررسی درصد جوانه‌زنی (80 درصد) بیشتری نسبت به بذر کوچکتر (56 درصد) بدون پوشش داشت. در مقابل جمعیت یولاف‌وحشی کامیاران می‌باشد که بیشترین وزن دانه را داشت. این جمعیت در میان سایر جمعیت‌های یولاف‌وحشی بیشترین درصد و سرعت جوانه‌زنی را نشان داد. در این جمعیت نیز بذر بزرگتر بدون پوشش در تمامی دماها درصد جوانه‌زنی بیشتری نسبت به بذر کوچکتر بدون پوشش داشت. به دلیل وجود تنوع بالا بین جمعیت‌های علف‌هرز یولاف‌وحشی نمیتوان برنامۀ مدیریتی قابل توصیه به همه مناطق را داشت. از اینرو توصیه‌هایی مدیریتی باید در مقیاس منطقه‌ای با توجه به رویکرد هر منطقه اتخاذ گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Role of temperature, position and seed-coat in the regulation of wild oat population germination

نویسندگان [English]

  • Somayyeh Forozesh 1
  • Hamid Rahimian Mashhadi 2
  • Hassan Alizade 2
  • Mostafa Oveisi 2
1
2
چکیده [English]

Wild oats seed is dormant and seeds can persist in the soil for a long time. Factors that influence germination are temperature, seed position and seed coat. Thus, laboratory experiments were conducted at University of Tehran, Collage of Agronomy and Plant Breeding, to study the effect of temperature, seed positin and seed coat on seed germination of four population of Avena ludoviciana. The experimental design was a completely randomized design with factorial arrangement of treatments with three replications. Experimental treatments were seed position (lower and upper seeds), temperatures (5, 10, 15, 20, 25 and 30 ◦c). Response of germination rate against temperature was described with sigmoid function for each population. The results in laboratory showed that the lowest germination percentage (GP) and germination rate (GR) were obtained in Qaemshahr primary and secondary seed without coat, with lowest seed weight among all populations studied. Big seed without coat had higher germination percentages (%80) than small seed (%56) in Qaemshahr. In contrast, Kamyaran with highest seed weight had higher germination percentages and germination rate. In Kamyaran population big seed without coat had higher germination percentages and germination rate than small seed. . Decreasing in GP and GR in seed with coat compare to seed without coat in Marvdasht and Mahidasht, were observed. However, management plans could be proposed at regional scale according to the approach of modifying the patterns of agronomic to which the local populations have adapted.

کلیدواژه‌ها [English]

  • Keywords:Seed coat
  • Seed position
  • Seed dormancy
  • Sigmoidal model
  1. Adkins, S. W., Loewen, M. & Symsons, S. J. (2000). Variation within pure lines of wild oat (Avena fatua) in relation to degree of primary dormancy. Weed Science ,48, 859-864.
  2. Andersen, A.M. 1953. The effect of the glumes of paspalum notatum flugge on germination.
  3. Proceedings of the Association of Official Seed Analysts, 93-100.
  4. Alvarado, V., Bradford, K. J. (2005). Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research ,15, 77–88.
  5. Alvarado, V., Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment ,25, 1061–1069.
  6. Atri, A., Javanshir, A., Moghadam, M. & Shakiba, M. R. (1998). Evaluation of competition in zea and phaseolus mixture by reverse yield model. Journal Agriculture Science. 4: 105-97.
  7. Atwood, W. M. (1914). A physiological study of the germination of Avena fatua. Botany Gaz. ,57, 386-414.
  8. Baghestani, M. H., Zand, A., Barjaste, A. R., Veisi, M., Noroz zade, SH., Jamali, M. & Kakhaki, S. H. (2008). Investigating efficacy of BEHPIC and CURRENT Herbicides on grassy weed in wheat fields. Final Report. Iranian Plant Protection Research Institute.
  9. Baskin, C. C. & Baskin, J. M. (1998). Seeds – Ecology, Biogeography, and Evolution of Dormancy and Germination, San Diego: Academic,
  10. Baskin, C. C. & Baskin, J. M. (2001). Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press.
  11. Batlla, D. & Benech-arnold, R. L. (2003). A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds. Development of a thermal time model based on changes in seed population thermal parameters. Seed Science Research ,13, 55–68.
  12. Beheshtian, M. M., Rahimian, M. H. & Alizade, H. (2011).Modeling seeding emergence patterns of wild barley (Hordeum spontaneum) and canary grass (Phalaris minor) weeds. Ph.D. Thesis. Faculty of Agriculture Tehran University.
  13. Beckie, H. J, Heap, I. M., Smeda, R. J. & Hall, L. M. (2000). Screening for herbicide resistance in weeds. Weed Technology, 14, 428-445.
  14. Bello, I. A, Owen, M. D. K. & Hatterman-Valenti, H. M. (1995). Effect of shade on velvetleaf (Abutilon theophrasti) growth, seed production, and dormancy. Weed Technology , 9, 452–455.
  15. Benech-Arnold, R. L., Sanchez, R. A., Forcella, F. Kruk, B. & Ghersa, C. M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 67, 105-122.
  16. Bewley, J. D. & Black, M. (1986). Seeds: Physiology of Development and Germination. Plenum press. N. Y. and London.
  17. Bhagirath, S. C. & David, E. J. (2008). Seed Germination and seedling emergence of giant sensitive plant )Mimosa invisa). Weed Science, 56, 244–248.
  18. Bradford K. J. & Nonogaki, H. (2007). Seed development, dormancy and germination. Blackwell Publishing Plant Science, Oxford
  19. Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248–260.
  20. Bryson, C. T. (1990). Interference and critical time of Hemp Sesbania (Sebania exalta L,) in cotton (Gossypium hirsutum L.). Weed Technology. 4, 833-837.
  21. Chen, F. S., MacTaggart, J. M. & Elofsen, R. M. (1982). Chemical constituents in wild oat (Avena fatua) and their effects on seed germination. Canadian Journal Plant Science, 62, 155–161.
  22. Cheplick, G. P. & Sung, L. Y. (1998). Effects of maternal nutrient environment and maturation position on seed heteromorphism, germination, and seedling growth in Triplasis purpurea (Poaceae). International Journal of Plant Sciences, 159, 338–350.
  23. Corbineau, F., Lecat, S. & Côme, D. (1986). Dormancy of three cultivars of oat seeds (Avena sativa L.). Seed Science and Technology, 14, 725–735.
  24. Corbineau, F., Black, M. & Côme, D. (1993). Induction of thermo dormancy in Avena sativa seeds. Seed Science Research, 3, 111–117.
  25. Cumming, B. O. & Hay, J. A. (1958). Light and dormancy in wild oat (Avena fatua L.). Nature, 609-610.
  26. Datta, S. C, Evenari, M. & Gutterman, Y. (1970). The heteroblasty of Aegilops ovata L. Israel Journal of Botany, 19, 463–483.
  27. Deekker, J. (2003). The foxtail (Setaria) species-group. Weed Science, 51, 641–656.
  28. Downing, T. E., Ringlus, L., Hulme, M. & Waughray, D. (1997). Adapting to climate of cold regions. Dordrecht:Kluwer Academic Publishers, 809- 825.
  29. Dumur, D., Pilbeam, C. J. & Craigon, J. (1990). Use of the weibull function to calculate cardinal temperatures in faba bean. Journal of Experimental Botany. 41, 1423-1430.
  30. Escudero, A., Nunez, Y. & Perez-Garcıa, F. (2000). Is fire a selective force of seed size in pine species? Acta Oecologica. International Journal of Ecology 21.
  31. Fenner, M. (1992). Environmental influences of seed size and composition. Horticultural Reviews ,13, 183-213.
  32. Friesen, G. & Shebeski, L. H. (1961). The influence of temperature on the germination of wild oat seeds (Avena fatua L.). Weeds, 9, 634-8.
  33. Garcia-Huidobro, J., Monteith. J. L, Squire, G. R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S & H.). I. Constant temperature. Journal of Experimental Botany,33, 288–296.
  34. Gonzalez-Rabanal, R., Casal, M. & L. Trabaud. (1994). Effects of high temperatures, ash and seed position in the inflorescence on the germination of three Spanish grasses. Journal of Vegetation Science, 5, 289–294.
  35. Gosling, P. G, Butler, R. A., Black, M. & Chapman, J. M. (1981). The onset of germination ability in developing wheat. Journal of Experimental Botany, 32, 621–627.
  36. Greipsson, S. & Davy, A. J. (1995). Seed mass and germination behaviour in populations of the dune-building grass Leymus arenarius. Annals of Botany, 76, 493–501.
  37. Grundy, A. C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research, 43, 1–11.
  38. Gutterman, Y. (2000). Maternal effects on seeds during development. In Fenner M. ed. Seeds: the ecology of regeneration in plant communities, 2nd edn. Wallingford: 59–84.
  39. Hardegree, S. P. (2006). Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany, 97, 1115–1125.
  40. Hardegree, S. P, Winstral, A. H. (2006). Predicting germination response to temperature. II. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data. Annals of Botany. 98, 403–410.
  41. Hay, J. R. & Cumming, B. G. (1959). A method for inducing dormancy in wild oats (Avena fatua L). Weeds, 7, 34–40.
  42. Jones, R. & Medd, R. (1997). Economic analysis of integrated management of wild oats involving fallow, herbicide and crop rotational options. Australian Journal of Experimental Agriculture, 37, 683–691.
  43. Jorge, M. H. A. & Ray, D. T. (2004). Germination characterization of Guayule (Parthenium argentatum) seed by morphology mass and X-ray and analysis. Industrial Crops and Production, 23, 59-63.
  44. Khan, M. L. (2004). Effects of seed mass on seedling success in Artocarpus heterophyllus L. a tropical tree species of north – east India. Acta Oecologia, 25,103-110.
  45. Karlsson, L. M, Tamado, T. & Milberg, P. (2008). Inter-species comparison of seed dormancy and germination of six annual Asteraceae weeds in an ecological context. Seed Science Research, 18, 35–45.
  46. Leggett, H. W. & Banting, J. D. (1959). Can we tame the wild oat? Ctry Guide 78, 17.
  47. Loddo, D., Sousa, E., Masin, R., Calha, I. M., Zanin, G., Fernandez-Quintanilla, c. & Dorado, J. (2014). Germination response of local Southern European populations of Datura stramonium at a range of constant temperatures. Weed Research Society, 54, 356–365.
  48. Luzuriaga, A. L., Escudero, A. & Erez-Garc, P. I. A. F. (2006). Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Research, 46, 163–174.
  49. Magyar, L. & Lukacs, D. (2002). Recent data on seed dormancy and germination ecology of annual mercury (Mercurialis annua L.). in Proc Of the 12th European Weed Research Society. Symp. Doorwerth, the Netherlands: European Weed Research Society, 374– 375
  50. Masin, R., Loddo, D., Benvenuti, S., Clara Zuin, M., Macchia M. & Zanin, G. (2010). Temperature and Water Potential as Parameters for Modeling Weed Emergence in Central-Northern Italy. Weed Science, 58, 216–222.
  51. Maranon, T. (1987). Ecologia del polimorfismo somatico de semillas y la sinaptospermia en Aegilops neglecta Req. ex Bertol. Anales del Jardin Botanico de Madrid. 44, 97–107.
  52. Medd, R. W. & Pandey, S. (1990). Estimating the cost of wild oats (Avena spp.) in the Australian wheat industry. Plant Protection Quarterly, 5, 142–144.
  53. Meyer, S. E. & Allen, P. S. (2009). Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research, 19, 225–239.
  54. Montazeri, M., Zand, E. & Baghestani, M. A. (2005). Weeds and their control in wheat fields of Iran: Plant Pest & Disease Research Institute Press. 85 p. (In Persian).
  55. Moravcova, L., Perglova, I. Pysek, P., Jitech, V. & Pergl, J. (2005). Effects of fruit position on fruit mass and seed germination in the alien species Heracleum mantegazzianum (Apiaceae) and the implications for its invasion. Acta Oecologica, 28, 1–10.
  56. Morgan, S. F. & Berrie, A. M. M. (1970). Development of dormancy during seed maturation in Avena ludoviciana winter wild oat.
  57. Murdoch, A. J., (1998). Dormancy cycles of weed seeds in soil. Asp. Appl. Biol. 51, 119–126.
  58. Murdoch, A.J., ISIK, D., NICHOLLS, R.A. (2010). Dormanc and germination of Chenopodium album seeds from different latitudes in Europe and North America. In: Proceedings 15th EWRS Symposium (ed L BASTIAANS et al.) (12–15 July, Kaposvar, Hungary), 74. Pannonia- Print Ltd., Budapest, Hungary.
  59. Phaneendranath, B. R., Duell, R. W. & Funk, C. R. 1978. Dormancy of Kentucky bluegrass seed in relation to the color of spikelets and panicle branches at harvest. Crop Science, 18, 683–684.
  60. Piper, E. L, Boote, K. J., Jones, J. W. & Grimm, S. S. (1996). Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36, 1606-1614.
  61. Priestley, D. A., (1986). "Seed Ageing: Implications for Seed Storage and Persistence in the Soil. Cornell University Press, Ithaca, NY.
  62. Quail, P. H. & Carter, O. G. (1969). Dormancy in seeds of Avena ludoviciana and Avena fatua. Austrian Journal Agriculture Research, 20, 1- 11.
  63. Raju, M. V. S. & Ramaswamy, S. N. (1983). Studies on the inflorescence of wild oats (Avena fatua). Canadian Journal of Botany, 61, 74–78.
  64. Rosenzweig, C. & Parry, M. L. (1994). Potential impacts of climate change on world food supply. Nature, 367, 133- 138.
  65. Sales, N. M, Perez-Garcia, F. & Silveira, F. (2013). Consistent variation in seed germination across an environmental. South African Journal of Botany,87, 129–133
  66. Salimi, H. & Ghorbanli, M. (2001). A study on seed germination Avena ludoviciana and the effective factors in seed dormancy breaking. Rostaniha, 2, 41- 55
  67. Samedani, B. & Baghestani, M. A. (2005). Comparison of allelopathic activity of different Artemisia species on seed germination rate and seedling growth. Pajouhesh and Sazandegi in agriculture and horticulture, 68, 69-74.
  68. Schwendiman, A. & Shands, H. L. (1943). Delayed germination or seed dormancy in Vicland oats. Agronomy Journal, 35, 681–688.
  69. Schutte, B. J., Tomasek, B. J., Davis, A. S. (2014). An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Research, 54, 1–12.
  70. Shafii, B. & Price, W. J. (2001). Estimation of Cardinal Temperatures in Germination Data Analysis. Journal of Agricultural, Biological, and Environmental Statistics. 6, 356-366.
  71. Sugawara, S. (1959). Studies on the germination capacity of upland rice seeds in relation to the location on the flower panicle. Bulletin of the Faculty of Agriculture of Niigata University , 11, 9–22.
  72. Taab, A. & Andersson, L. (2009). Primary dormancy and seedling emergence of black nightshade (Solanum nigrum) and hairy nightshade (Solanum physalifolium). Weed Science, 57, 526–532.
  73. Tseng, T. M, Burgos, N. R, Shivrain, V. K, Alcober, E. A. & Mauromoustakos, A. (2013). Inter- and intrapopulation variation in dormancy of Oryza sativa (weedy red rice) and allelic variation in dormancy-linked loci. Weed Research, 53, 440–451.
  74. Timmermans, B. G. H., Vos, J., van Nieuwburg, J., Stomph, T. J. & van der Putten, P. E. L. (2007). Germination rates of Solanum sisymbriifolium: temperature response models, effects of temperature fluctuations and soil water potential. Seed Science Research, 17, 221–231.
  75. Thurston, Joan M. (1951). Biology of wild oats. Rep. Rothamsted exp. Stn, 67-9.
  76. Thurston, Joan M. (1956). Wild oats. JI R. agvic. Society, 117, 43-52.
  77. Venable, D. L. and Levin, D. A. (1985). Ecology of achene dimorphism in Heterotheca latifolia. 1. Achene structure, germination and dispersal. Journal of Ecology, 73, 113–145.
  78. Wang, A. B, Tan, D. Y. Baskin, C. C. & Baskin, J. M. (2010). Effect of seed position in spikelet on life history of Eremopyrum distans (Poaceae) from the cold desert of north-west China. Annals of Botany, 106, 95–105.
  79. Winn, A. A. (1991). Proximate and ultimate sources of within individual variation in seed mass in Prunella vulgaris (Lamiaceae). American Journal of Botany. 78, 838-844.
  80. Wolfe, L. M. (1995). The genetics and ecology of seed size variation in a biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). Oecologia, 101, 343–352.
  81. Yan, J.Y., Wang, E., Nevo, Gutterman, Y. and Cheng, J.P. (2012). Effects of partial endosperm removal on embryo dormancy breaking and salt tolerance of Hordeum spontaneum seeds. Russian Journal of Plant Physiology, 423-427.
  82. European Journal of Agronomy, 72, 38–46.