ارزیابی تأثیر باکتری‌های ریزوسفری محرک رشد بر بهبود شاخص‌های رشد گیاه سویا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، مؤسسۀ تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 دانشجوی سابق کارشناسی ارشد، خاک‌شناسی (بیولوژی خاک)، دانشکدۀ کشاورزی، دانشگاه زنجان، ایران

3 دانشیار، دانشکدۀ کشاورزی دانشگاه ارومیه، ایران

چکیده

یکی از راهکارهای کاهش کاربرد کودهای شیمیایی، استفاده از باکتری­های افزایندۀ رشد گیاه است. در این تحقیق در آغاز 51 جدایۀ باکتری ریزوسفری یونجه از نظر ویژگی‌های محرک ­رشد ­گیاهی غربالگری شدند. با توجه به نتایج غربالگری، دو جدایۀ ریزوبیوم، دو جدایۀ باسیلوس و چهار جدایۀ سودوموناس به‌عنوان جدایه‌های برتر انتخاب و تأثیر آن‌ها بر شاخص­های رشد سویا در قالب آزمایش بلوک­های کامل تصادفی با دوازده تیمار و سه تکرار انجام شد. تیمارها شامل چهار جدایۀ سودوموناس، دو جدایۀ باسیلوس، دو جدایۀ­ ریزوبیوم، مخلوط جدایه­های باسیلوس، سودوموناس و ریزوبیوم، شاهد بدون کود و باکتری، نصف توصیۀ کودی بدون باکتری و توصیۀ کودی بدون باکتری بودند. همۀ تیمارهای حاوی باکتری‌های محرک رشد با باکتری برادی­ریزوبیوم همراه بودند. نتایج نشان‌ داد، همۀ تیمارهای باکتری نسبت به تیمار شاهد، وزن خشک اندام‌های هوایی، وزن­ خشک‌ریشه، شمار گره، شمار غلاف، وزن­ خشک دانه، غلظت آهن، روی و منگنز بخش هوایی، جذب نیتروژن و فسفر بخش­هوایی را به‌طور معنی­داری افزایش دادند. بیشترین غلظت منگنز بخش­هوایی سویا از تیمار ریزوبیوم و بیشترین غلظت فسفر و نیتروژن نیز از تیمار باسیلوس (T5)، ریزوبیوم(T8)  و سودوموناس (T1) به دست ­آمد. کارایی باکتری­های سودوموناس در افزایش شاخص­های رشد سویا بهتر از کارایی جدایه­های باسیلوس و ریزوبیوم بود، که دلیل احتمالی این موضوع به خاصیت محرک رشدی باکتری‌های سودوموناس مربوط می­شود. با توجه به نتایج تحقیق، استفاده از باکتری­های افزایندۀ ­رشد ­گیاه باعث کاهش کاربرد کودهای شیمیایی به‌ویژه نیتروژن و فسفر می­شود. بااین‌وجود کاربرد آن‌ها به‌عنوان کود زیستی در شرایط مزرعه به تحقیقات بیشتری نیاز دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The evaluation of plant growth promoting rhizobacteria effect for improving soybean growth indices

نویسندگان [English]

  • Hossein Besharati 1
  • Shahla Pashapour 2
  • Mahmoud Rezazadeh 3
1 Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
2 Former M. Sc. Student, Soil Science (Soil Biology), Agricultural Collage Zanjan University, Iran
3 Associated Professor, Agricultural Collage Urmia University, Iran
چکیده [English]

The use of plant growth promoting rhizobacteria, is a solution to reduce the application of chemical fertilizers. In this research, first 51 rhizobacteria isolated from alfalfa rhizosphere, were screened from plant growth promoting point of view. According to the results of the screening of bacteria, 2 Rhizobium isolates, 2 Bacillus isolates and 4 Pseudomonas isolates were selected as superior strains to prepare the inoculums. To evaluate the effect of selected isolates on soybean growth indices, a completely randomized block design was carried out with 12 treatments and 3 replications. Treatments were included 4 Pseudomonas isolates, 2 Bacilli isolates and 2 Rhizobium isolates, mix of Bacillus, Rhizobium and Pseudomonas, control without Fertilizer and bacteria, half of fertilizer recommendation and Fertilizer recommendation. All Plant Growth Promoting Rhizobacteria treatments were accompany with Bradyrhizobium. The results indicated that bacteria inoculation significantly increased soybean growth indices, such shoot dry weight, root dry weight, root nodules, pods, seed weight, Fe, Zn, Mn, concentration of shoot, shoot nitrogen and phosphorus uptake compared to the control and the highest shoot Mn concentration was related to T8 treatment and the highest shoot N and P concentrations resulted from T5 (Bacillus), T8 (Rhizobium) and T1 (Pseudomonas) treatments. Generally, Pseudomonas bacteria were more effective than Bacillus and Rhizobium, to increase soybean growth indices and it can be attributed to high plant growth promoting properties of bacteria. According to the results, the usage of plant growth promoting rhizobacteria (PGPR), can decrease consumption of chemical fertilizers, especially N and P fertilizers. However, their use in field conditions requires further investigation.

کلیدواژه‌ها [English]

  • Bacillus
  • Bradyrhizobium
  • Fertilizer recommendation
  • Inoculum
  • PGPR
  • Pseudomonas
  1. Akhtar, S. M. & Siddiqui, Z. A. )2008(. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protection, 27, 410-417.
  2. Alagawadi, A. R. & Gaur, A. C. )1988(. Associative effect of Rhizobium and phosphatesolubilizing bacteria on the yield and nutrient uptake of chickpea. Plant and Soil, 105, 241-246
  3. Alexander, D. B. & Zuberer, D. A. )1991(. Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 39-45.
  4. Amico, E. D., Cavalca, L. & Andreoni, V. )2005(. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water. FEMS Microbiology Ecology, 52, 153-162.
  5. Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R. & Lalande, R.. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes. Plant and Soil, 204, 57-67.
  6. Bano, N. & Musarrat, J. (2003). Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Current Microbiology, 46, 324-328.
  7. Barea, J. M., Pozo, M. J., Azco’n, R. & Azco´n-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56, 1761-1778.
  8. Boller, T. & Mauch, F. (1988). Colorimetric assay for chitinase. Methods of   Enzymology, 161, 430-435.
  9. Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal, 43, 434-438.
  10. Broekaert, W. F., Delaure, S. L., De Bolle, M. F. C. & Cammue, B. P. A. (2006). The role of ethylene in host–pathogen interactions, Annual Review of Phytopathology, 44, 393-416.
  11. Buonassisi, A. J., Copeman, R. J., Pepin, H. S. & Eaton, G. W. (1986). Effect of Rhizobium spp. on Fusarium solani f.sp. Phaseoli, Canadian Journal of Phytopathology, 8,140-146.
  12. Chabot, R., Antoun, H., Kloepper, J. W. & Beauchamp, C. J. (1996). Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Applied and Environmetal Microbiology, 62, 2767-2772.
  13. Deputy of Economy and Planning. (2006). Agronomy and Horticulture products, (2005-2004). Bulletin No., 8306, Statistics and Information center, Agricultural Jehad, Tehran, Iran. (in Farsi)
  14. Dobbelaere, S., Vanderleyden, J. & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107-149.
  15. Donate-Corre, J., Leon-Barrios, M. & Perez-Galdona, R. (2004). Screening for plant growth-promoting rhizobacteria in Chamaecytisus proligerus, a forage tree-shrub legume edemic to Canary Island. Plant and Soil, 266, 261-272. 
  16. Duffy, B. K. & Défago, G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmetal Microbiology, 65, 2429-2438.
  17. Emami, A. (1996). Methods of leaf analysis (Vol. 1). Technical Note No. 982. Soil and Water Research Institute. (in Farsi)
  18. Esitken, A., Karlidag, H., Ercisli, S. & Sahin, F. (2002). Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft, 67, 139-142.
  19. Esitken, A., Karlidag, H., Ercisli, S., Turan, M. & Sahin, F. (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research, 54, 377-380.
  20. Galleguillos, C., Aguirre, C., Barea, J. M. & Azcon, R. (2000). Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Science, 159, 57-63.
  21. Gaur, Y. D., Sen, A. N. & SubbaRao, N. S. (1980). Improved legume-Rhizobium symbiosis by inoculating preceding cereal crop with Rhizobium. Plant and Soil, 54, 313-316.
  22. Geetha, R., Falguni, S. & Anjana, J. D. (2008). Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresource Technology, 99, 4544-4550.
  23. Ghosh, S. & Basu, P. S. (2006). Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiological Research, 161, 362-366.
  24. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41,109-117.
  25. Glick, B. R., Patten, C. L., Holguin, G. & Penrose, D. M. (1999). Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London, UK, pp. 86-179.
  26. Gray, E. J. & Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes, Soil Biol. Biochem.37:395-412.
  27. Gyaneshwar, P., Kumar, L.J. & Parekh, P.S. (2002). Role of microorganisms in induced by ACC deaminase containing PGPR. The American Phytological Society, MPMI, 17(8), 865-871.
  28. Honma, M. & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1- carboxylic acid, Agricultural Biology and Chemistry, 42, 1825-1831.
  29. Joshi, F., Archana, G. & Desai, A. J. (2006). Siderophore cross-utilization among rhizospheric bacteria and role of their differential affinities for Fe+3 on growth stimulation under iron limited conditions. Current Microbiology, 53, 141-147.
  30. Kapulink, Y., Sarig, S., Nur, A., Okon, Y. & Henis, Y. (1982). The effect of Azosprillium inoculation on growth and Yield of corn. Israel Journal of Botany, 31, 247-255.
  31. Khan, A., Geetha, R., Akolkar, A., Pandya, A., Archana, G. & Desai, A. J. (2006). Differential cross-utilization of heterologous siderophores by nodule bacteria of Cajanus Cajan and its possible role in growth under iron-limited conditions. Applied Soil Ecology, 34, 19-26.
  32. Lucy, M., Reed, E. & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek, 86, 1-25.
  33. Mandal, S. M., Mondal, K. C., Dey, S. & Pati, B. R. (2007). Optimization of cultural and nutritional conditions for indole-3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Research Journal of Microbiology, 2, 239-246.
  34. Manero, F. J., Probanza, A., Ramos, B., Flores, J. J. & Garcı´a-Lucas, J. A. (2003). Effects of culture filtrates of rhizobacteria isolated from wild lupin on germination, growth, and biological nitrogen fixation of lupin seedlings. Journal of Plant Nutrition, 26, 1101-1115.
  35. Nelson, D. W. & Sommers, L. E. (1982). Total Carbon, Organic Carbon, and organic matter. In Methods of soil analysis. Part2. Chemical and Microbiological properities: 2nd Ed; Page, A. L. Ed. American Society of Agronomy: Madison, W.I, 539-579.
  36. Olsen, S. R. & Sommers, L. E. (1982). Phosphorus. Methods of soil analysis: Part 2. Chemical and microbiological properties. Agronomy Mongr. 9.2nd ed. ASA and SSSA, Madison, WI., 403-430.
  37. Owens, L. D., Lieberman, M. & Kunishi, A. (2006). Inhibition of ethylene production by rhizobitoxine, Plant Physiology, 48, 1-4.
  38. Parmar, N. & Dadarwal, K. R. (1999). Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. Journal of Applied Microbiology, 86(1), 36-44.
  39. Peix, A., Rivas-Boyero, A. A., Mateos, P. F., Ridriguez-Barrueco, C., Martinez-Molina, E. & Velazquez, E. (2001). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions, Soil Biology and Biochemistry, 33, 103-110.
  40. Podile, A. R. (1995). Seed bacterization with Bacillus subtilis AF1 enhances seedling emergence, growth and nodulation of pigeon pea. Indian Journal of Microbiology, 35, 199-204.
  41. Preeti, V., Reddy, M. S. & Kavitha, S. (2002). Role of biological preparations in enhancement of rice seedling growth and grain yield. Plant Biology, 44, 503-507.
  42. Rai, M. K. (2006). Hand book of microbial biofertilizers. Food products press, an imprint of the aworth press, Inc. p.p. 137-182.
  43. Richards, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. United States Department of Agriculture Handbook # 60. Washington D.C.
  44. Rosas, S., Soria, R., Correa, N. & Abdala, G. (1998). Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Molecular Biology, 38, 1161-1168.
  45. Schippers, B., Bakker, A. W. & Bakker, P. A. H. M. (1987). Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 339-358.
  46. Shaharoona, B., Arshad, M. & Zahir, Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate). Plant and Soil, 53, 357-392.
  47. Silo-Suh, L., Suh, S-J., Sokol, P. A. & Ohman, D. E. (2002). A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. In: Proceedings of the National Academy of Sciences, USA. 99, 15699-15704.
  48. Smith, K. P. & Goodman, R. M. (1999). Host variation for interactions with beneficial plantassociated microbes, Annual Review of Phytopathology, 37, 473-491.
  49. Sperber, J. I. (1985). The incidence of apatite solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9, 778-781.
  50. Tien, T. M., Gaskins, M. H. & Hubbell, D. H. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Applied Environmental Microbiology, 37, 1016-1024. 
  51. Tilak, K. V.,Rangayanki, N. & Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and hizobiumon nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science, 57, 67-71.
  52. Walkley, A. (1974). A critical examination of a rapid method fordetermining organic carbon in soil. Soil Science, 65, 251-264.
  53. Xie, H., Pasternak, J. J. & Glick, B. R. (1996). Isolation and characterization of mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology, 32, 67-71.
  54. Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., Philip-Hollingworth, S., Orgambide, G., de Bruijn, F., Stolzfus, J., Buckley, D., Schmidt, T. M., Mateos, P. F., Ladha, J. K. & Dazzo, F. B. (2001). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil, 194, 99-114.
  55. Yazdisamadi, B. & Zali, A. (1975). Effect of Rhizobium and nitrogen on soybean. Presented at world soybean research conference university of Illinois.
  56. Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S. & Pare´, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226, 839-851.