بررسی تأثیر تشدید بیان ژن توکوفرول سیکلاز در تحمل به تنش خشکی در توتون (Nicotiana tabacum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

تنش‌های محیطی دامنة گسترده‌ای از پاسخ‌های گیاهی مانند تغییر در بیان ژن تا تغییرپذیری‌ها در سوخت‌وساز (متابولیسم) درون‌یاخته‌ای و رشد را راه‌اندازی می‌کنند. واکنش‌های گیاهی مختلفی برای رویارویی با اثرگذاری‌های زیانبار بالقوة ایجادشده توسط نور، خشکی، شوری، عفونت ناشی از بیمارگر و تنش‌های دیگر وجود دارد. آلفا توکوفرول[1] ترکیب عمدة ویتامین E است که در کلروپلاست برگ یافت می‌شود. این ضداکسنده (آنتی‌اکسیدان)، گونه‌های فعال اکسیژن مشتق‌شده از نورساخت (فتوسنتز) را غیرفعال کرده و از انتشار پراکسیداسیون چربی (لیپید) توسط پاکسازی رادیکال‌های پروکسیل چربی در غشاهای تیلاکوئید جلوگیری می‌کند. در این تحقیق گیاهان توتون دارای سازة ژنی pBin:At.TC  که در آنها ژن توکوفرول سیکلاز (یکی از ژن‌های کلیدی مسیر ساخت ویتامین  E که تبدیل 2 و 3-دی متیل-5-فیتیل-1 و 4-بنزوکوئینون را به گاما – توکوفرول[2] کاتالیز می‌کند) تشدید بیان یافته بود، استفاده شدند. به منظور بررسی اثر ژن منتقل‌شدۀ گیاهان تراریخت (تراژن) حاصل تحت تنش خشکی قرار گرفتند و ویژگی‌های فیزیولوژیک مانند محتوای سبزینه (کلروفیل)ها و کاروتنوئید، محتوای آمینواسید پرولین، میزان نفوذپذیری نسبی غشا و محتوای آب نسبی گیاه در گیاهان تراریخت و شاهد بررسی و تجزیه و تحلیل شد. نتایج نشان داد که گیاهان تراریخت محتوای سبزینه، پرولین و آب نسبی بالاتر و همچنین میزان نشت یونی کمتری در سطوح تنشی 40 و 60 درصد در مقایسه با گیاهان شاهد داشتند. به‌طورکلی تشدید بیان ژن توکوفرول سیکلاز در گیاه توتون به‌احتمال موجب افزایش مقاومت آن در شرایط تنش خشکی می‌شود.



[1] . α-tocopherol


[2] . 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ)

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Tocopherol cyclase gene overexpression effects on the drought stress tolerance by using of tabacco (Nicotiana tabacum) transgenic plants

نویسندگان [English]

  • Nahid Ranaeian 1
  • Alireza Abbasi 2
  • Hassan Zeinali Khanghah 3
1 M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Assistant Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Environmental stresses trigger a wide variety of plant responses, such as altered gene expression to changes in cellular metabolism and growth. The several plant reactions exist to circumvent the potentially harmful effects caused by light, drought, salinity, pathogen infections and other stresses. a-Tocopherol is the major vitamin E compound found in leaf chloroplasts. This antioxidant deactivates photosynthesis-derived reactive oxygen species and prevents the propagation of lipid peroxidation by scavenging lipid peroxyl radicals in thylakoid membranes. In this study, we used the  tabacco plants containing of pBin:At.TC  construct that overexpressed the tocopherol cyclase gene. For analysis effect of  overexpressed this gene, the transgenic plants were subjected to drought stress and were studied number of physiologic parameters such as, chlorophyls and carotenoid, proline amino acid content, relative water content,  membrane permeability, in transgenic and wild type plants in  normal and drought stress condition. The results indicated that transgenic plants have increased chlorophyl, proline and relative water content and decreased membrane Permeability in 40 and 60 stress levels, in comparison to wild type plants. Therefore the overexpression of tocopherol cyclase gene in tabacco plants maybe cause increased plant tolerance under drought stress conditions.

کلیدواژه‌ها [English]

  • tocopherol cyclase
  • Reactive Oxygen Species
  • Lipid Peroxidation
  • Antioxidant
  • droght stress
  1.  Rahnama, A., Munns, A., Poustini, K. & Watt, M. (2011). A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany, 62(1) 69-77.
  2. Raanaian, N., Abbasi, A.R. & Zeinali, H. (2013). Overexpression tochopherol cyclase (At.TC) in tabacco (Nicotiana tabacum) plants. Crop Biotechnology, 4, 149-156
  3. Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. (2003). Tolerance of Mannitol Accumulating Transgenic Wheat to Water Stress and Slinity. Plant Phsiol, 131, 1748-1755.
  4. Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
  5. Asada, K. (1999). The water –water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 50, 601-39.
  6. Ashraf, M. & Foolad, M. R. (2007). Roles of glycin betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot, 59, 207-216.
  7. Bates, L. S., Waldern, R. P. & Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant soil, 39, 205-207.
  8. Bohnert, H. J. Nelson, D. E. & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099-1111.
  9. Bohnert, H. J. & Jensen, R.G. (1996). Strategies for engineering water stress tolerance in plants. Trends in Biotechnology, 14, 89-97.
  10. Burton, G. W., Cheng, S. C., Webb, A. & Ingold, K. U. (1986). Vitamin E in young and old human red nlood cells. Biochim Biophys Acta, 860, 84-90.
  11. Chandrasekar, V., Sairam, R. K. & Srivastava, G. C. (2000). Physiological and Biochemical Responses of Hexaploid and Tetraploid Wheat to Drought Stress. J. Agron. Crop Sci, 185, 219-222.
  12. Delauney, A. J. & Verma, D. P. S. (1993). Prolin biosynthesis and osmoregulation in plants. Plant J., 4, 215-223.
  13. Demmig-Adams, B. & Adams, III. WW. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1, 21-6.
  14. Fahrenholzt, S. R., Doleiden, F. H., Tozzolo, A. M. & Lamola, A. A. (1974). On the quenching of singlet oxygen by a-tocopherol. Photochem Photobiol, 20, 505-9.
  15. Foote, C. S., Ching, T. Y. & Geller, G. G. (1974). Chemistry of singlet oxygen. XVlll. Rates of reaction and quenching of alpha-tocopherol and singlet oxygen. Photochem Photobiol, 20, 511-513.
  16. Foyer, M. V. (1992). The antioxidant effects of thylakoid vitamin E. Plant cell inviron, 15, 381-392.
  17. Hofius, D., Hajirezaeim, M., Geiger, M., Tschierschh, H., Melzer, M. & Sonnewald, U. (2004). RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol, 135, 1256-68.
  18. Holmstrom, K. O., Somersalo, S., Mandal, A., Palva, E. T. & Welin, B. (2000). Improved tolerance to salinity and low temoerature in transgenic tobacco producing glycin betaine. J. Exp. Bot, 51, 177-185.
  19. Kavi Kishor, P. B., Sangam, S., Amrurha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Sreenath Rao, Reddy, K. J., Theriappan, P. & Sreenivasulu, N. (2005) Regulation of prolin biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 3-10     
  20. Kerepsi, I. & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci, 40, 482-487.
  21. Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A. & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ. Exp. Bot, 63, 19-27.
  22. Lee, G. J., Duncan, R. R. & Carrow, R. N. (2007). Nutrient uptake responses and inorganic ion contribution to solute potential under salinity stress in halophytic seashore paspalums. Crop Sci, 47, 2410-2419.
  23. Maeda, H., Song, W., Sage, T. L. & DellaPenna, D. (2006). Arabidopsis vitamin E deficient mutants exhibit a cold sensitive phenotype independent of photooxidative damage and suppressed by alterations in membrane polyunsaturated fatty acids. Plant Cell, 18, 2710-2732.
  24. Munne-Bosch, S. (2002). The function of tocopherol and tocotrienol in plants. Crit. Rev. Plant Sci, 21, 31-57.
  25. Munne- Bosch, S. (2005). The role of a-tocopherol in plant stress tolerance. Plant Physiol, 162, 743-748.
  26. Munne´-Bosch, S. & Alegre, L. (2002 a). The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci, 21, 31-57.
  27. Munne-Bosch, S., Weiler, E., Alegre, L., Muller, M., Duchting, P. & Falk, J. (2007). A-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta, 225, 681-691.
  28. Ohta, S., Mita, S., Hattori, T. & Nakamura, K. (1990). Construction and expression in tabacco of a b-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol, 31, 805-813.
  29. Osmond, B., Badger, M., Maxwell, K., Bjorkman, O. & Leegod, R. (1997). Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci, 2, 119-20.
  30. Ouyang, S., He, S., Liu, P., Zhang, W., Zhang, J. & Chen, S. (2010). The role of tocopherol cyclase in salt stress tolerance of rich (oryza sativa). China Life Sci, 54, 181-188.
  31. Pollard, A. & Wn Jones, R. G. (1979). Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta, 144, 291-298.
  32. Ritchie, S. W., Nguyen, H. T. & Holaday, A. S. (1990). Leaf water content and gas exchanges parameters of two wheat genotypes differing in drought resistance. Crop Sci, 30, 105-111.
  33. Russin, W. A., Evert, R. E., Vanderveer, P. J., Sharkey, T. D. & Briggs, S. P. (1996). Modification of a specific class of plasmodesmata and loss of sucrose export ability in a sucrose export defective1 maize mutant. Plant Cell, 8,645-58.
  34. Sattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M. & DellaPenna, D. (2004). Vitamin E i s essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 16, 1419-32.
  35. Shen, B., Jensen R. G. & Bohnert, H. J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol, 115, 527-532.
  36. Smirnoff, N. & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28, 1057-1060.
  37. Trebst, A. (2003). Function of b-carotene and tocopherol in photosystem II. Z Naturforsch, 58c, 609 –20.
  38. Trebst, A., Depka, B. & Hollander-Czytko, H. (2002). A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett, 43, 2157-62.
  39. Wagner, P. & Heinecke, J. W. (1997). Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidin residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol, 17, 3338-3346.
  40. Xiong, L., Ishitani, M., Lee, H. & Zhu, J. K. (2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stressand osmotic stress-responsive gene expression. Plant Cell, 13, 2063-2083.
  41. Zhao, Y., Aspinall, D. & Paleg, L. G. (1992). Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. Journal of Plant Physiology, 140, 541-543.
  42. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Sci. 6: 66-71.
  43. Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y. L. & Wu, R. (1998). Overexpression of Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci, 139, 41-48.