جایگزینی کاربرد کود شیمیایی فسفاته با کودهای زیستی در تولید نخود در شرایط پیش‌تیمار کردن صحرایی بذر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکدة کشاورزی دانشگاه بوعلی‌سینا

2 دانشجوی کارشناسی ارشد دانشکدة کشاورزی دانشگاه بوعلی‌سینا

چکیده

برای بررسی تأثیر پیش‌تیمار کردن صحرایی بذر و دو کود زیستی بر ویژگی‌های سبز شدن و عملکرد نخود(Cicer arietinum L.) ، آزمایشی به صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی در سه تکرار در همدان طی سال 1392 انجام شد. عامل‌های آزمایشی شامل کود فسفات (0، 50 و 100 درصد از میزان توصیه‌شده)، کود زیستی (قارچ‌ریشه یا میکوریزا، بارور2، کاربرد توأم، بدون کاربرد) و پیش‌تیمار کردن (با و بدون) بودند. نتایج نشان داد پیش‌تیمار کردن درصد سبز شدن را 7/7 و سرعت سبزشدن را در تلفیق با قارچ‌ریشه و کاربرد 100 درصد کود فسفات توصیه‌شده 7/20 درصد نسبت به بذرهای پیش‌تیمارنشده در حالت بدون کاربرد فسفات و کود زیستی افزایش داد. بالاترین میزان عملکرد زیست‌توده (بیولوژیک) و دانه به ترتیب 303 و 849 گرم در مترمربع بود که از بذرهای پیش‌تیمارشده و کاربرد توأم کودهای زیستی به ترتیب با کاربرد 50 و 100  درصد فسفات به‌دست آمد که نسبت به شاهدهای خود در آن سطح کودی به ترتیب 146 و 250 درصد بیشتر بودند. در این بررسی بیشترین شاخص برداشت،  شمار غلاف و دانه در مترمربع از تیمار پیش‌تیمارشده و کاربرد توأم دو کود زیستی با کاربرد 50 درصد فسفات به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Replacement of phosphate fertilizer application by bio-fertilizers in chickpea production under on-farm seed priming conditions

نویسندگان [English]

  • Mohammad Ali Aboutalebian 1
  • Mohammad Elahi 2
1 Assistant Professor of Agronomy, Faculty of Agriculture, University of Bu Ali Sina
2 M. Sc. Student of Agronomy, Faculty of Agriculture, University of Bu Ali Sina
چکیده [English]

 In order to study the effect of on-farm seed priming and two bio-fertilizers on emergence and yield characteristics of chickpea, a factorial experiment was conducted in a randomized complete block design in Hamedan with three replications in 2013. The factors consisted of phosphate fertilizer (0, 50 and 100 percent of recommended) bio-fertilizer (mycorrhizae, Barvar2, both of them and no-application) and priming (priming and no-priming). Results showed that priming increased emergence percent by 7.7 and emergence rate by 20.7 in conjunction with mycorrhizae and 100% phosphate fertilizer compared to no-primed, no-phosphate and no bio-fertilizer. Highest biological and grain yield were respectively 849 and 303 g.m-2 that produced by primed seeds with application of two bio-fertilizers simultaneously at 100 and 50% of phosphate recommendation respectively that were 146 and 250 percent more compared to their controls in own phosphate fertilizer levels. In this study, the highest harvest index, number of pods and seeds per square meter were achieved in priming treatment with application of two bio-fertilizers simultaneously and phosphate fertilizer consumption of 50% recommended.

کلیدواژه‌ها [English]

  • Barvar
  • emergence
  • mycorrhizae
  • yield
  1. Aboutalebian, M. A., Sharifzadeh, F., Jahansouz, M. R., Ahmadi, A. & Naghavi, M. R. (2004). Effect of osmopriming treatments on speed of emergence, germination percentage, base temperature of germination and seedling vigor index of some wheat cultivars (Triticum aestivum L.). Iranian Journal of Soil and Water Research, 5(1), 67-82. (in Farsi)
  2. Afzal, I., Basra, S. M. A., Ahmad, R. & Iqbal, A. (2002).Effect of different seed vigour enhancement techniques on hybrid maize (Zea mays L.). Pakistan Journal of Agricultural Science, 39, 109-112.
  3. Afzal, I., Aslam, N., Mabood, F., Hussain, A. & Irfan, S. (2004). Enhancement of canola seed by different priming techniques. Caderno de Pesquisa SérieBiologia. Santa Cruz do Sul, 16, 19-34.
  4. Aghaee Sarbarzeh & Kanouni, H. (2004). Chickpeas. Jihad-e-Agriculture Organization of Kermanshah. P. 146. (in Farsi)
  5. Arif, M., Tariqjan, M., Marwat K. R. & Azim khan, M. (2008). Seed priming improves emergence and yield of soybean. Pakistan Journal of Botany, 40(3), 1169-1177.
  6. Asghar, H. N., Zahir, Z. A., Arshad, M., & Khaliq, A. (2002). Relationship between invitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35, 231-237.
  7. Ashraf, M. &Foolad, M. R. (2005). Pre-sowing seed treatment- a shotgun approach to improve germination plant growth and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223-271.
  8. Bakare, S. O. & Ukwungwu, M. N. (2009). On-farm evaluation of seed priming technology in Nigeria. African Journal of General Agriculture, 5, 93-97.
  9. Basra, S. M. A., Pannu, I. A. & Afzal, I. (2003). Evaluation of seedling vigour of hydro and matriprimed wheat (Triticum aestivum L.) seeds. International Agriculture Biological, 5, 121-123.
  10. Bastia, D. K., Rout, A. K., Mohanty, S., K. & Prysty, A. M. (1999). Effect of sowing date, sowing methods and seed soaking on yield and oil content of rainfed safflower grown in Kalahandi, Orissa. Indian Journal of Agronomy, 44, 621-623.
  11. Bennett, M. A. & Waters, L. (1987). Seed hydration treatments for improved sweet maize germination and stand establishment. Journal of the American Society for Horticultural Science, 112, 45-49.
  12. Bodsworth, S. & Bewley, J. D. (1981). Osmotic priming of seeds of crop species with polyethylene glycol as a means of enhancing early and synchronous germination at cool temperature. Canadian Journal of Botany, 59, 672-676.
  13. Cakmakci, R., Donmez, F., Aydýn, A. & Sahin, F. (2006). Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38, 1482-1487.
  14. Chandrakumar, K., Halepati, A. S., Desai, B. K. & Pujari, B. T (2006). Influence of intergrated management of nutrients on growth and productivity of wheat. Karnataka Journal of Agricultural Sciences, 32, 501-509.
  15. Conbolat, M. Y., Belin, S., Cakmakci, R., Sahin, F. & Adin, A. (2006). Effect of plant growth promoting rhizobacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils, 42, 350-357.
  16. Egamberdiyeva, D., Juraeva, D., Poberejskaya, S., Myachina, O., Teryuhova, P. Seydalieva, L. & Aliev, A. (2004). Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. In: Proceedings of 26th Southern Conservation Tillage Conference. June 8-9. Raleigh, North Carolina. North Carolina Agricultural Research Service, pp. 322.
  17. El-Habbasha, S. F., Hozay M. & Khalafallah, M. A. (2007). Integration effect between phosphorus levels and bio-fertilizers on quality and quantity yield of faba bean (Vicia faba L.) in newly cultivated sandy soils. Research Journal of Agricultural and Biology Scieces, 3, 966-971.
  18. Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W. & Etoa, F. X. (2006). Occurrence and functioning of phosphate solubilizing micro organisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology, 5(24), 2450-2460.
  19. Farooq, M., Basra, S. M. A., Warraich, E. A. & Khaliq, A. (2006). Optimization of hydropriming techniques for rice seed invigoration. Seed Scieces and Technology, 34, 529-534.
  20. Farshidfar, E., Mohammadi, R. & Sutca, J. (2002). Association between fields of drought tolerance in wheat diosmotic addition. Acta Agronomica Hungarica, 50, 377-‎‎381.
  21. Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrullahzadeh, S. & Moghaddam, M. (2010). Influence of hydro-priming duration on field performance of pinto bean (Phaseolus vulgaris L.) cultivars. African Journal of Agricultural Research, 5(9): 893-89.
  22. Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., & Pasternak, J. J. (1994). 1-aminocyclopropane-1- carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40: 911-915.
  23. Hadas, R. & Okan, Y. (1987). Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedling. Biology and Fertility of Soil, 5: 241-247.    
  24. Harris, D. (1996). The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor in semi-arid Botswana. Soil and Tillage Research, 40: 73-88.
  25. Harris, D., Joshi, A., Khan, P.A., Gothkar, P. & Sodhi, P.S. (1999). On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture, 35: 15–29.
  26. Harris, D. (2006). Development and testing of on-farm seed priming. Advances in Agronomy, 90: 129 -178.
  27. Harris, D., Rashid, A., Miraj, G., Arif, M. & Shah, H. (2007). On-farm seed priming with zinc sulphate solution- a cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Research, 102: 119-127.
  28. Hartnett, D. C. and Wilson, G. W. T. (2002). The role of mycorrhizas in plant community structure and dynamics: Lessons from grasslands. Plant and Soil, 244(1­2): 319- 331.
  29. Hussain, M., Farooq, M., Basra, S. M. A. & Ahmad, N. (2006). Influence of seed priming techniques on the seedling establishment, yield and quality of hybrid sunflower. International Journal of Agriculture & Biology, 8(1): 14–18.
  30. Kaur, S., Gupta, A. K., & Kaur, N. (2005). Seed priming increase crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. Journal Agronomy of Crop Science, 191: 81-87.
  31. Khajeh-Hosseini, M., Powell, A. A. & Binghman, I. J. (2003). The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Science and Technology, 27: 177-237.
  32. Khaliq, A. & Sanders, F. E (2000). Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biology and Biochemistry, 32: 1691-1696.
  33. Kokubun, M. & Watanable, D (1983). Analysis of yield-determining process of field-grown soybeans in relation to canopy structure: VIII. Effect of source and sink manipulations during reproductive growth on yield components. Japanese Journal of Crop Science, 52: 215-219.
  34. Krishna, A., Patil, C. R., Raghavendra, S. M. & Jakati, M. D. (2008). Effect of bio-fertilizers on seed germination canola inoculated with a phosphate – solubilizing isolate of Penicillium bilaj. Canadian Ecology, 28: 139-146.
  35. Latifzadeh, M., Aboutalebian, M. A., Zavareh, M., & Rabiei, M. (2013). Effect of on-farm seed priming and sowing date on seedling emergence characteristics, yield and yield components of a local genotype of bean as a second crop in Rasht. Iranian Journal of Field Crop Science, 1(44): 23-33. (in Farsi)
  36. Marschner, H. & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89-102.
  37. Marulanda, A., Azcon, R. & Ruiz-Lozano, J. M. (2003). Contribution of six arbuscular mycorrhizal fungi isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum, 119: 525- 533.
  38. Medina, O.A., Kretschmer, A. E. & Sylvia, D. M. (1990). Growth response of field-grown siratro (Macroptilium atropurpureum Urb.) and Aeschynomene americana L. to inoculation with selected vesicular-arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 9(1): 54-60.
  39. Mehrvarz, S., Chaichi, M. R. & Alikhani, H. A. (2008). Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). American-Eurasian Journal of Agricultural & Environmental Science, 3(6): 855-860.
  40. Mohammadi, G. R. (2009). The effect of seed priming on plant traits of late- spring seeded soybean (Glycine max L.). American- Eurasian Journal Agricultural & Enviromental Science, 5(3): 322-326.
  41. Musa, A. M., Harris, D., Johansen, C. & Kumar, J. (2001). Short duration chickpea to replace fallow after Aman rice: the role of on-farm seed priming in the High Barind Tract of Bangladesh. Experimental Agriculture, 37(4): 509-521.
  42. Nagar, R. P., Dadlani, M., & Sharama, S. P. (1998). Effect of hydropriming on field emergence and crop growth of maize genotypes. Seed Science and Technology, 26: 1-5.
  43. Ngoc Son, T. T., Man, V. V. & Hiraoka, H. (2001). Effect of organic and biofertilizer on quality, grain yield and soil properties of soybean under rice based cropping system. Omon Rice, 9: 55-61.
  44. Ortus, I. & Harris, P. J. (1996)Enhancment uptake of phosphorus by mycorrhizal sorghum plant as influenced by forms of nitrogen. Plant and Soil, 184: 225-264.
  45. Panwar J.D.S. (1991) Effect of VAM and Azospirillum brasilense on photosynthesis, nitrogen metabolism and grain yield in wheat. Indian Journal of Plant Physiology, 34: 357-361.
  46. Rahchmndi, H., Aboutalebian, M. A., Ahmadvand, G., & Jahedi, A. (2012). Effect of on-farm seed priming and planting date on emergence characteristics and some of physiological growth indices of three soybean cultivars (Glycine max L.) in Hamedan. Iranian Journal of Field Crop Science, 4(43): 715-728. (in Farsi).
  47. Rashid, A., Harris, D., Hollington, P.A. & Rafiq, M. (2004). Improving the yield of mungbean (vigna radiata) in the northwest frontier province Pakistan using on-farm seed priming. Experimental Agriculture, 40: Pp. 233-244.
  48. Roy, N. K., & Srivastava, A. K. (2000). Adverse effect of salt stress conditions on chlorophyll content in wheat (Triticum aestivum L.) leaves and its amelioration through pre-soaking treatments. Indian Journal of Agriculture Science, 70: 777-778.
  49. Rudresh, D. L., Shivaprakash, M. K. & Prasad, R.D. (2005). Effect of combined application of rhizobium, phosphate solubilizing bacterium and           Trichoderma spp. On growth, nutrient uptake and yield of chickpea (Cicer arietinum L.). Applied Soil Ecology, 28:139-146.
  50. 50.      Ruiz-Lozano, J.M., Azcon, R. & Gomez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus speciesin Lactuca sativa plant. Physiologia Plantarum, 98: 767-772.
  51. Ruiz-Lozano, J.M. & Azcon, R., (1996). Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agriculture Ecosystems and Environment, 60(2-3): 175-181.
  52. Samarbakhsh, S., Rejali, F., Ardakani, M. R., PakNejad, F. & Miransari, M. (2009). The combined effect of fungicides and arbuscular mycorrhiza on corn (Zea mays L.) growth and yield under field conditions. Journal of Biological Sciences, p372-376. (in Farsi).
  53. Siddiqui, Z. A. & Pichtel, J. (2008). Mycorrhizae: an overview. P. 1–35. In: Z.A. Siddiqui et al., (Eds) Mycorrhizae: Sustainable agriculture and forestry. Springer Science Business Media B. V.
  54. Singh, S., & Kapoor, K. K.)1994(. Solubilization of insoluble phosphates by bacteria isolated from different sources. Environmental and Ecological Statistics. 12: 51-55.
  55. Sivritepe, H. O. & Dourado, A. M. (1995). The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds. Annals of Botany, 75: 165-171.
  56. Snapp, S., Price, R. & Morton, M. (2008) Seed priming of winter annual cover crops improves germination and emergence. Agronomy Journal, 100: 1506-1510.
  57. Stephenson, A. G., Poulton, J. L., LAU, T. C. & Koide, R. T. )1998(. Effects of soil phosphorus level and mycorrhizal infection on the male function of plants. In J. P. Lynch and J. Deikman [eds.], Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic and ecosystem processes. Current Topics in Plant Physiology, 19: 52–67.
  58. Styer, R. C. & Cantliffe, D. J. (1983). Evidence of repair processes in onion seed during storage at high seed moisture contents. The Journal of Experimental Botany, 34: 277-282.
  59. Subedi, K. D. & Ma, B. L. (2005). Seed priming does not improve corn yield in a humid temperate environment. Agronomy Journal, 97: 211-218.
  60. Swift, C. E. (2004). Mycorrhiza and soil phosphorus levels. Area Extension Agentmen. http://www.colostate.edu/Depts/CoopExt/TRA/PLANTS/mycorrhiza.
  61. Sylvia, D. M. & Williams, S. E. (1992). Vesicular- Arbuscular Mycorrhizae and Environmental Stress: 101-124. In: Bethlenfalvay, G.J. and Linderman, R.G., (Eds). Mycorrhizae in Sustainable Agriculture. American Society of Agronomy, Medison Wisconsin, 124 P.
  62. Tisdall, J. M. (1991). Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29(6): 729-743.
  63. Turan, M., Ataoglu, N., & Sahin, F. (2006). Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture, 28: 99- 108.
  64. 64.      Varier, A., Vari, A. K. & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science, 99: 450-456.
  65. 65.      Vazques, P., Holguin, G. & Puente, M. E. (2000). Phosphate solubilizing micro-organism associtated with the rizospherte of mangroves in semi arid coastal lagoon. Bioligy and Firitility of Soils, 30: 460-468.
  66. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizer. Plant and Soil, 255: 571-586.
  67. Warcup, J. H. (1971). Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytologist, 70: 41-46.
  68. Yarniya, M., Ahmadzadeh, V., Farajzadeh Memari Tabrizi, A. & Noori, N. (2008). Effect of priming and seed size and treated with tumble weed extract on germination and growth of soybean. In: Proceedings of the First National Conference on Seed Science and Technology of Iran. University of Agricultural Sciences and Natural Resources of Gorgan, Gorgan, Iran. (in Farsi).
  69. Yazdani, M., Bahmanyar, M. A., Pirdashti, H. & Esmaili, M. A. (2009). Effect of phosphate solubilizing micro-organisms (PSM) and plant promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proceedings of World Academy of Sciences. P: 2070-3740.