اثر دما بر متابولیت ها و بیان برخی از ژن‌های مسیر بیوسنتز تیمول و کارواکرول در آویشن باغی (Thymus vulgaris)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، گروه زراعت و اصلاح نباتات.

2 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، گروه زراعت و اصلاح نباتات.

3 دانشگاه شهید بهشتی

چکیده

عوامل محیطی مختلف سبب تغییر در میزان و نوع متابولیت‌های ثانویه در گیاهان  می شوند. به‌منظور بررسی اثر دما بر متابولیت‌های ثانویه و بیان ژن‌های مسیر بیوسنتزی تیمول و کارواکرول در آویشن باغی، آزمایشی با سه تیمار دمایی گرما، سرما و شرایط طبیعی در اتاقک رشد، به مدت یک ماه اجرا شد. میزان ترکیبات اسانس با استفاده از دستگاه Gc/MS و  Gc و میزان بیان ژن­های TvTps1، CYP178، CYP180 و CYP181 به‌وسیله qRT-PCR اندازه گیری شد. اگرچه اعمال هر دو تیمار دمایی گرما و سرما، ترکیبات مونوترپنی فنولی (تیمول و کارواکرول) را نسبت به شرایط طبیعی افرایش داد، دمای بالا سبب افزایش معنی‌دار میزان کارواکرول و  دمای پائین، سبب افزایش معنی دار مقدار تیمول شد. تیمارهای دمایی در مقایسه با شرایط طبیعی، میزان گاماترپنین را کاهش داد. تجزیه بیان ژن‌ها نشان داد که اعمال تیمار سرما، سبب افزایش میزان بیان ژن‌های TvTps1 و CYP178 و تیمارگرما موجب کاهش آن‌ها شد. میزان بیان ژن‌های CYP180 و CYP181 در هر دو شرایط سرما و گرما افزایش نشان داد؛ اگرچه میزان افزایش در شرایط گرما، بسیار بیشتر از تیمار سرما بود. به‌طورکلی نتایج نشان داد که دمای محیط نقش بسزایی در میزان متابولیت­های آویشن دارد و احتمالا مناطق گرم تر برای تولید کارواکرول و مناطق سردتر برای تولید تیمول مناسب تر هستند.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of temperature on metabolites and the expression of genes involved in thymol and carvacrol biosynthesis pathway in Thymus vulgaris

نویسندگان [English]

  • Valiollah Mohammadi 1
  • Behnam Mondak 2
  • Javad Hadian 3
  • Hassan Zeinali Khanghah 1
1 Agronomy and Plant Breeding Dept. University of Tehran
2 Agronomy and Plant Breeding Dept. University of Tehran
چکیده [English]

Environmental factors make changes in the amount and type of secondary metabolites. To study the effects of temperature regimes on secondary metabolites and the expression of genes involved in biosynthesis pathway of thymol and carvacrol in thyme, an experiment was conducted in a growth chamber for one month with three thermal treatments including heat, cold and normal temperatures. Essential oil compounds were measured by Gc / MS and Gc and the expression of TvTps1, CYP178 and CYP180 genes assayed by qRT-PCR. Both heat and cold temperatures increased the phenolic monoterpen compounds (thymol and carvacrol) compared to normal condition. High temperature led to significant increases in carvacrol while low temperature resulted in a great increase in the amount of thymol. Gamaterpenin level was declined due to thermal treatments. Gene expression analysis revealed that the cold condition increased the expression of TvTps1 and CYP178 genes, while heat decreased the expressions. CYP180 and CYP181 were highly expressed under both cold and heat conditions, although the amount of expression was much higher under high temperature. Generally, the results indicated that the environment temperature played a key role in thyme metabolites type and content. It could be concluded that the regions with high and low temperatures were suitable for carvacrol and thymol production, respectively.

کلیدواژه‌ها [English]

  • Carvacrol
  • cold
  • CYP
  • effect
  • heat
  • thyme
  • thymol
  1. REFERENCES

    1.  Burke, C. C., Wildung, M. R. & Croteau, R. (1999). Geranyl diphosphate synthase: Cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proceedings of the National Academy of Sciences, 9,13062–13067.
    2. Channuntapipat, C., Sedgley, M. & Collins, G. (2001). Sequences of the cDNAs and genomic DNAs encoding the S1, S7, S8, and Sf alleles from almond, Prunus dulcisTheoretical and Applied Genetics, 103, 1115-1122.  
    3. Clark, J. & Menary, R. C. (1980). Environmental effects on peppermint (Mentha. piperita L) I. Effect of day length, photon flux density, night and day temperature on yield and composition of peppermint oil. Austral. J. Plant Physiol, 7, 685-692.
    4. Crocoll, C. (2011). Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme. PhD Dissertation. Biologisch Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena, Germany.
    5. Dudai, N., Putievsky, E., Palevitch, D & Halevy, A. (1992). Monoterpene content in Origanum syriacum as affected byenvironmental conditions and flowering. Physiologia Plantarum84, 453-459.
    6. Duriyaprapan, S., Britten, E. J. & Basford, K. (1986). The effect of temperature on growth, oil yield and oil quality of Japanese mint. Annals of Botany, 58, 729-736.
    7. Eguchi, Y., Widiastuti, A., Odani, H., Chinta, Y. D., Shinohara, M., Misu, H., Kamoda, H., Watanabe, H. & Hasegaw, M. (2016). Identification of terpenoids volatilized from Thymus vulgaris L. by heat treatment and their in vitro antimicrobial activity. Physiological and Molecular Plant Pathology, 94, 83-89.
    8. Fakhr Tabatabai, S. M. (2006). A systematic encounter with living nature and other articles in the field of ecology. Anteshar Co., Tehran, 186 Pp.
    9. Fletcher , R., Slimmon, T., Auley, S. & Kott , L.  (2005). Heat stress reduces the accumulation of rosmarinic acid and the total antioxidant capacity in spearmint (Mentha spicata L)Journal of the Science of Food and Agriculture, 85, 2429–2436.
    10. Gershenzon, J. & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology7,408-414.
    11. Gröger, S., Schmiderer, C., Steinborn, R. & Novak, J. (2012). Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). Plant  Physiology, 169, 353-359.
    12. Habibi, S., Qaderi, A. & Fatehi, F. (2017).  The Study of relative expression of key genes of thymol biosynthesis pathway in Thymus vulgaris cv. ‘Varico 3’ under Cold Stress Using Real-Time PCR. Journal of Medicinal plants, 16 (4), 50-59.
    13. Jamzad, Z. (2009). Thymus  and Satureja  species of  Iran. Research Institute of Forests and Rangelands, Tehran, Iran. (In Persian)
    14. Kokkini, S., Karousou, R., Dardioti, A., Krigas, N. & Lanaras, T. (1997).  Autumn essential oils of Greek oregano. Phytochemistry, 44, 883- 886.
    15. Maffei, M. & Scannerini ,S.  (2011). Photomorphogenic and chemical responses to blue light in Mentha piperitaJournal of Essential Oil Research, 72, 712-718.
    16. Mondak, B., Mohammadi, V. A., Zeinali, H. & Hadian, J. (2015). Evaluation of genetic variability in Iranian Thymus daenensis sub sp. daenensis, by use of inter simple sequence repeat (ISSR) markers. Journal of modern genetic, 10(4), 575-584.
    17. Morshedloo, M. R., Craker, L. E., Salami, A., Nazeri, V., Sang, H. & Maggi, F. (2017). Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiology and Biochemistry, 111, 119-128.
    18. Nickavar, B., Mojab, F. & Dolat-Abadi, R. (2005). Analysis of the essential oils of two Thymus species from Iran. Food Chemistry, 90, 609–611. (In Persian)
    19. Novak, J., Lukas, B. & Franz, C.  (2010). Temperature influences thymol and carvacrol differentially in Origanum spp. (Lamiaceae). Journal of essential oil research, 22, 412-418.
    20. Omid baigi, R. (2009). Product and processing of medicinal plant. Astan ghods razavi press. Mashhad, Iran. (In Persian)
    21. Pateraki, A. & Kanellis, K. (2010).  Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus, Plant Cell Report, 29, 629- 641.
    22. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45. doi: 10.1093/nar/29.9.e45.
    23. Rudolph, K., Parthier, C., Egerer-Sieber, C., Geiger, D., Muller, Y. A., Kreis, W. & Müller, F.  (2016). Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgarisActa Crystallogr, 72, 16-23.
    24. Sangwan, N., Farooqi, A. H., Shabih, F. & Sangwam, R. (2001). Regulation of essential oil production in plants. Plant Growth Regulation, 34, 3-21.
    25. Schellmann, S. & Hülskamp, M. (2005). Epidermal differentiation: trichomes in Arabidopsis as a model system. The International Journal of Developmental Biology,49 (5-6), 579-584.
    26. Stahl-Biskup, E. & Saéz, F. (2002). Thyme: the genus Thymus, medicinal and aromatic plant-industrial profiles, Taylor & Francis, London.
    27. Thompson, J., Chalchat, J. E., Michet, A., Linhart, Y. & Ehlers, B. (2003).  Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. Journal of Chemical Ecology, 29, 859-880.
    28. Timmermans, K. (2003). Intellectual property rights and traditional medicine: policy dilemmas at the interface. Social Science & Medicine, 57,745-756.
    29. Yanivie, Z. & Palevitch, D. (1982). Effects of drought on secondary metabolites of medicinal and aromatic plants. In: Atal CK, Kapur BM (eds) Cultivation and Utilization of Medicinal Plant. Regional Research Laboratory council of Scientific & Industrial Research, Jammu-Tawi, pp.1–12.
    30. Davis,E. M. & Croteau, R. (2000). Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topics in Current Chemistry, 209, 53–95.
    31. Lambert, E., Faizal, A. & Greelen, D. (2011). Modulation of triterpene saponin production: in vitro cultures, elicitation, and metabolic engineering. Applied Biochemistry and Biotechnology, 164, 220-237.
دوره 51، شماره 1
اردیبهشت 1399
صفحه 195-205
  • تاریخ دریافت: 29 مهر 1397
  • تاریخ بازنگری: 08 اسفند 1397
  • تاریخ پذیرش: 17 فروردین 1398
  • تاریخ انتشار: 01 اردیبهشت 1399