افزایش کارائی زیستی نیتروژن گیاه سویا با جهش در باکتری بردی‌ریزوبیوم ژاپنیکوم‌ همزیست آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کشاورزی هسته ای، پژوهشگاه علوم و فنون هسته ای

2 پردیس کشاورزی دانشگاه تهران، گروه خاکشناسی

3 استاد گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 پ‍ژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی ایران

5 دانشگاه تهران، پردیس کشاورزی و منابع طبیعی

6 دانشیار پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

برای افزایش کارائی زیستی نیتروژن گیاه سویا، از 4 سویه باکتری بردی­ریزوبیوم ژاپنیکوم‌ همزیست آن، سویه بومی RS117 بر اساس آزمایشات میکروسکوپی، تلقیح با گیاه و تعیین توالی ژن16S rRNA انتخاب شدند. سپس این سویه به شکل محلول در محیط YMB با دزهای 0 تا 5000 گری با فاصله­ 500 گری (Gray) اشعه گاما پرتوتابی شدند و حدود 800 جدایه موتانت آن، از دزهای 100 تا 2500 گری جمع­آوری شد. جدایه­های مذکور بر اساس تغییر رنگ محیط GMGT، ارزیابی و 11 جدایه برتر انتخاب شد. در آزمون کارایی همزیستی، 11 جدایه منتخب با گیاه سویا در شرایط گلخانه در قالب بلوک­های کامل تصادفی در سه تکرار، 3 جدایه برتر موتانت شماره 3، 8 و 9 مقدار قابل­توجه 56 تا 81 درصد، افزایش توان تثبیت زیستی نسبت به سویه مادری  RS 117 نشان دادند. ارزیابی بیان نسبی ژن­های nodA وnifK2 در ریشه گیاهان تلقیح­شده با جدایه موتانت شماره 9 و سویه وحشی به­روش Real Time PCR بیانگر افزایش و کاهش آنها در جدایه موتانت نسبت به سویه مادری است. نتایج حاصل بیانگر آن است که سویه های موتاسیون یافته در اثر تابش پرتوهای گاما، توانسته اند به مقدار قابل توجهی تثبیت زیستی نیتروژن را در گیاه سویا افزایش دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Increasing symbiotic nitrogen fixation in soybean by using mutation in microsymbiont Bradyrhizobium japonicum

نویسندگان [English]

  • Javad Pirvali Beiranvand 1
  • Ahmad Ali Pourbabaee 2
  • Hossein Ali Alikhani 3
  • Sayed Pejman Shirmardi 4
  • Alireza Abbassi 5
  • Babak Motesharezadeh 6
1 Nuclear science and Technology Reseach Institute, Atomic Energy Organization of Iran, Tehran, Iran, P. O. Box: 31485-498
2 Dept. of soil science, university of Tehran
3 scientific member
4 Asistance prof. Nuclear science and Technology Reseach Institute, Atomic Energy Organization of Iran
5 associate professor
6 associate prof., colleage of Agriculture and Natural Resources, University of Tehran.
چکیده [English]

To increase the symbioticnitrogen fixation in soybean, a native Bradyrhizobium japonicum strain RS 117 was selected from four strains via infectiveness, symbiotic effectiveness and sequancing 16S rRNA gene. Then, mentioned strain in the form of YMB inoculum wasirradiated by gamma rays dosages 0-5000 Gray with a 500 Gray interval dosage. About 800 mutant isolates were collected on YMA from different doses. 11 isolates in efficiency point of view changing the GMGT media colour were selected as the best isolates for further study. These isolates were tested for their symbiotic effectiveness (SE) under proper greenhouse condition with a randomized complete block design in 3 replications; and 3 more efficient isolates No. 3, 8 and 9  increased 56- 81 percent SE more than wild strain. At last, relative gene expersion nodA, nifK2 in mutant and wild strain bacteria approved mollacular differences between both of them by indicating Increase and decrease in amount, in mutant isolate number 9 in comparison with the wild Bradyrhizobium japonicum strain RS 117. The results indicate that gamma-irradiated mutations in Bradyrhizobium japonicum strains have significantly increased the biological fixation of nitrogen in soybean plants.

کلیدواژه‌ها [English]

  • symbiotic nitrogen fixation
  • gamma irradiation
  • nodA
  • nifK2
  • relative gene expression
REFERENCES
Ahari Mostafavi, H., Safaie, N., Naserian, B., Fathollahi, H., Dorri, H., Lak M., & Babaie, M. (2009) Possibility of biological control of bean root rot disease, using of avirulent mutants of  Fusarium solani f. sp. Phaseoli isolate. Journal of Plant Production, 16(3), 135-149 (In Farsi).
Ahmadi, K., Gholizadeh, H., Ebadzadeh, H., Hatami, F., Fazli Estebarak, M., Hosseinpour, R., Kazemian, A., & Rafiei, M. (2016) No. 85.09. Agriculture Statistics.  Department of Agricultural, Crop Years 1393- 94. Deputy Director of Planning and Economics, ICT Center, Ministry of Jihad-e-Agriculture. 163 pages (In Farsi).
Beck, D.P., Materon, L.A., & Afandi, F. (1993) Practical rhizobium legume technology, Manual no. 19 ICARDA, Syria, 389 P.
Biswas, B., & Gresshoff, P.M. (2014). The role of symbiotic nitrogen fixation in sustainable production of biofuels. International Journal of Molecular science. 2014, 15, 7380-7397; doi:10.3390/ijms15057380.
Ahari Mostafavi, H., & Safai, V. N. (2008) Application of nuclear technology in plant protection. 122 pages (In Farsi).
Ahari Mostafavi, H., Mirmajlessi, S. M., Safaie, N., Minassyan, V., Fathollahi, H., Dorri, H. R., & Mansouripour, S. M. (2012)  The Use of a Gamma-irradiated Mutants of  F. solani f. sp. phaseoli with reduced pathogenicity for the biological control of Fusarium root rot of bean (Phaseolus vulgaris) in field conditions. Journal of Agricultural Science Technology. 14: 1415-1423 (In Farsi).
Dadarwal K. R., Kundu B. S., & Tauro P. (1981) In vitro and in vivo nitrogenase activity of Rhizobium mutants and their symbiotic effectivity. Journal of Bioscience, 3, 2, 117-124.
FAO, (1984). Legume inoculation and their use, Rome, 110p.
Fehr, W. R., Caviness, C. E., Burmood, D. T.,  Pennington, J., S. (1971) State of development descreptions for soybeans, Crop Science, 11, 929-31.
Garrity G.M., Brenner D.J., Krieg N. R., Staley J. T. (2009). Bergay’s manual of systematic bacteriology, Second Edition, Volume 2, The Proteobacteria, Part A, Introductory Essays, 328 P.
Hardarson G., Blis, F. A., Cigales-Rivero, M. R., Henson, R. A., Kipe-Nolt, J. A., Longeri, L., Manrique, A., Pena-Cabriales, J. J., Pereira, P. A. A., Sanabria, C. A., Tsai, S. M. (1993). Genotypic variation in biological nitrogen fixation by common bean, Plant & Soil, 152(1), 59-70.
Hardarson G., Golbs, M., Danso, S. K. A. (1989). Nitrogen fixation in soybean as affected by nodulation pattern, Soil Biology &. Biochemistry, 21, 783-7.
Hassan M. M., & Eissa. R. A. (2013) Molecular characterization of salt tolerant rhizobial strains induced by gamma rays using RAPD markers. New York Science Journal; 6(4): 36-41.
Kaneshiro T. & Kurtzman, M. A. (1982) Glutamate as a differential nitrogen source for the characterization of acetylene-reducing Rhizobium strains.  Journal of Applied Bacteriology, 52, 201-207.
Kaneshiro T., Slodki M. E., & Plattner, R. D. (1983) Tryptophan catabolism to indolepyruvic and indoleacetic acids by Rhizobiun japonicum L-259 Mutants. Current Microbiology, 8, pp. 301-306.
Keyser H. H., & Li, F. (1992) Potential for increasing biological nitrogen fixation in soybean, Plant and Soil, 141, 119- 35.
Livak K. J., & Schmittgen T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4):402-8.
Moradi R., Shahbazi, S., Ahari Mostafavi, H., Ebrahimi, M., Askari H., & Miramjesli S. M. (2013). Study of gamma-ray effects on morphological and antagonistic properties of Trichoderma harzianum fungi. Scientific Journal of Biotechnology of Plants. 4, 109-117 (In Farsi).
Naqavi, M. Halaajian, M., Abouei Mehrizi F. (2012) Introduction to Biotechnology, Tehran University Press. 344 p. (In Farsi).
Peoples M. B., Herridge, D. F., Ladha, J. K. (1995). Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production, Plant & Soil, 174, 3-28.
Pirvali Beiranvand, J. (1999) A study on soybean cultivar and rhizobium strain interaction related to biological nitrogen fixation in different soils. Master Thesis of Soil Science, Kara, University of Tehran. 154 pages (In Farsi).
Pirvali Beiranvand, J., Moosavi Shalmani, M., Ahari Mostafavi, H., Nasserian Khiabani, B., Shahhosseini G., & Showrang, P. (2010). Application of nuclear technology in agriculture. Chapter 12 of the Nuclear Technology Book (2, 1097, 1267). Publication of the Institute of Nuclear Science and Technology, Tehran, Iran (In Farsi).
Pirvali Beiranvand, J., Salehrastin, N., Afarideh. H. & Sagheb, N. (2003). An evaluation of the N- fixation capacity of some Bradyrhizobium japonicum strains for soybean cultivars.  Iranian, Journal of Agricultural Science. Vol.34, No.1, 97-104 (In Farsi).
Pirvali Beiranvand, J., Salehrastin, N., Mousavi Shalmani, M. (2006). The study of the molecular nitrogen fixation ability of three main soybean cultivars in co-existence with Bradyrhizobium japonicum using isotropic Nitrogen-15 ratio in Iran. Journal of Nuclear Science and Technology, No. 36, p. 6-1 (In Farsi).
Sambrook J. & Green. R. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protocol;doi:10.1101/pdb.prot093450.
Sambrook J. & Russell D. W. (2006). Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocol. 2006 Jun 1; 2006(1). pii: pdb.prot4455. doi: 10.1101/pdb.prot4455.
Schmittgen. T. D, & Livak. K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols. 3(6):1101-8.
Shahbazi S., Ahari Mostafavi, H., Ebrahimi, M., Askari, H. Miramjesli S. M., & Karimi, M. (2013). Increase of Trichoderma harzianum fungus gene chitinase activity by radio-gamma induced mutation. Journal of Crop Biotechnology, Third Year, J. 5, 33-40 (In Farsi).
Singh Duhan J., 2013. Tn5 siderophore producing mutants of Rhizobium and its role in nitrogen fixation and iron uptake in pigeonpea. African Journal of Microbiology Research, 7(16), 1459-1464.
Somasegaran, P., & Hoben, H. J. (1994)HandBook for Rhizobia, methods in legume rhizobium technology, laboratory manual. 450 pages.
Wani S. P., Ruple, O. P., Lee, K. K. (1995) Sustainable agriculture in the semi- arid tropics through biological nitrogen fixation in grain legumes, Plant & Soil, 174, 29-49.
Zelalem A., Kebede, A. & Muthuswamy. M. (2014) Effect of chemical mutation on improvement of rhizobial isolate, s tolerance to acid and alkaline soil condition in Ethiopia. International Journal of Current Research. 6, 01, 4733-4738.