ارزیابی برخی از پاسخ های فیزیولوژیکی و بیوشیمیایی ارقام مختلف گندم دیم تحت تیمارهای آبیاری تکمیلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی گیاهان زراعی ، گروه زراعت و اصلاح نباتات دانشگاه تهران

2 گروه زراعت و اصلاح نباتات، دانشگاه تهران

3 دانشیار گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه کردستان

4 گروه زراعت و اصلاح نباتات دانشگاه تهران

چکیده

در مقاله حاضر، آزمایشی بر روی ۷ رقم مختلف گندم بمنظور شناسایی مناسب‌ترین زمان آبیاری تکمیلی و شناخت فرآیندهای فیزیولوژیکی و بیوشیمیایی مرتبط با تحمل در برابر خشکی، انجام شده است. این آزمایش، به صورت اسپلیت پلات در قالب طرح بلوک‌های کامل تصادفی با 3 تکرار تحت آبیاری تکمیلی در مراحل ساقه‌دهی، غلاف رفتن، گلدهی و شرایط بدون آبیاری (دیم) در دانشکده کشاورزی و منابع طبیعی دانشگاه کردستان، در دو سال متوالی ۱۳۹۳ و ۱۳۹۴ اجرا گردید. بدین منظور، میزان پراکسید هیدروژن (H2O2)، مالون دی آلدیید (MDA)، پروتئین کل، فعالیت آنزیم‌های آنتی‌اکسیدان کاتالاز (CAT)، آسکوربات پراکسیداز (APX)، گوایاکول پراکسیداز (GPX) و سوپر اکسید دیسموتاز (SOD) اندازه‌گیری شد. نتایج تجزیه واریانس نشان داد که در اکثر صفات، بین ارقام و آبیاری تکمیلی اثر متقابل معنی‌داری وجود داشت. بر اساس نتایج به دست آمده، آبیاری تکمیلی منجر به کاهش میزان H2O2 نسبت به تیمار شاهد شد. بیشترین میزان H2O2 و MDA به ترتیب مربوط به ارقام آراس، ابوغریب و تموز، درحالیکه کمترین میزان آن‌ها را رقم آذر ۲ به خود اختصاص داد. اعمال آبیاری تکمیلی در مراحل مختلف ساقه‌دهی، غلاف رفتن و گلدهی سبب افزایش میزان پروتئین کل (به استثنای رقم آراس)، فعالیت آنزیم‌ CAT و SOD در تمامی ارقام و همچنین فعالیت آنزیم APX در ارقام آکساد ۶۵ ، رزگاری، سمیتو و آذر ۲ شد. علاوه بر این، ارقام آذر ۲، رزگاری و اکساد ۶۵ با آبیاری تکمیلی در مرحله گلدهی، توانستند با تنظیم مکانیسم‌های دفاعی خود شرایط موجود را کنترل کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of some physiological and biochemical responses of different wheat cultivars under supplementary irrigation treatments

نویسندگان [English]

  • Sahar Hame Rashid 1
  • Ali Ahmadi 2
  • Adel SioSe Marde 3
  • Mohamadreza Jahansouz 4
1 Ph.D. Student in Crop physiology and Professor, Department of Field Crop Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, Department of Field Crop Science, College of Agriculture, University of Kurdistan, Sanandij, Iran.
4 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

In the present work, an experimental study on seven different wheat cultivars is carried out to assess the most suitable supplementary irrigation stage and the understanding of physiological and biochemical processes associated with drought tolerance. During the years 2015 and 2016, this experiment is conducted in experimental field of Agriculture and Natural Resources of Kurdistan University as split plot in randomized complete block design with 3 replications under supplementary irrigation conditions at the stemming, boating and flowering stages, respectively. For this purpose, the amount of Hydrogen Peroxide (H2O2), Malondialdehyde (MDA), total protein, the activity of Catalase antioxidant enzymes (CAT), Ascorbate peroxidase (APX), Guaiacol peroxidase (GPX) and superoxide dismutase (SOD) are measured. The analysis of variance showed that there was a significant interaction between cultivars and complementary irrigation in most traits. Based on the obtained results, supplemental irrigation resulted in a decrease in H2O2 levels compared to control. The highest levels of H2O2 and MDA are obtained for Aras, Abughraib and Tamuz cultivars, respectively, whilst the lowest one is obtained for Azar 2. Applying the supplementary irrigation during stemming, boating and flowering stages increased the total amount of protein (except Aras), the activity of CAT and SOD in all cultivars, and also increased the activity of APX in Acsed 65, Rozgari, Semito and Azar 2. Furthermore, it is found that the cultivars Azar 2, Rezgari and Ocsede 65, with supplementary irrigation at flowering stage, were able to control the existing conditions by defining their defense mechanisms.

کلیدواژه‌ها [English]

  • Supplementary irrigation
  • Wheat
  • Antioxidant Enzymes
  • Malondialdehyde
  • peroxide hydrogen
REFERENCES
 
Beckers, G. J. & Spoel, S. H. (2006). Fine-tuning plant defence Signalling: salicylate versus jasmonate. Plant Biol (Stuttg), 8, 1-10.
Beyer, W. F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Annals of Biochem, 161, 559-566.
Blokhina, O., Virolainen, E. & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179-194.
Blum, A. (2011). Plant breeding for water-limited environments. Springer Science Business Media, 127, 227-232.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Cruz de Carvalho, M.H. (2008) Drought stress and reactive oxygen species. Plant Signaling and Behavior, 3:156-165
Dionisio-Sese ML. & Tobita, S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135: 1-9.
Gambel, P. E. & Burke, J. J. (1984). Effect of water stress on the chloroplast antioxidant system. I. Alteration in glutathione reductase activity. Plant Physiology, 76, 615- 621
Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Huang, J., Sun, S., Xu, D., Lan, H., Sun, H., Wang, Z., Bao, Y., Wang, J., Tang, H. & Zhang, H. (2012). A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 80(3), 337-350.
Khaledian, Y., Maali-Amiri, R. & Talei, A. (2015). Phenylpropanoid and antioxidant changes in chickpea plants during cold stress. Russian Journal of Plant Physiology, 62(6), 772-778.
Kim, S. K., Jung, S. M., Ahn, K. H., Jeon, H. J., Lee, D. H., Jung, K. M., Jung, S. Y. & Kim, D. K. (2005). Identification of three competitive inhibitors for membrane-associated, Mg 2+-dependent and neutral 60 kDa sphingomyelinase activity. Archives of Pharmacal Research, 28(8), 923-929.
Lascano, H. R., Antonicelli, G. E. Luna, C. M., Melchiorre, M. N., Gomez, L. D., Racca, R. W., Trippi, V. S. & Casano, L. M. (2005). Antioxidant system response of different wheat cultivars under drought: Field and in vitro studies. Aust. J. Plant Physiol, 28, 1095-1102.
Loreto, F. & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against zone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol., 127, 1781-1787.
Mika, A. & Lüthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132(3), 1489-1498.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7: 405–410.
Ohe, M., Rapolu, M., Mieda, T., Miyagawa, Y., Yabuta, Y., Yoshimura, K. & Shigeoka, S. (2005). Decline in leaf photooxiadtive-stress tolerance with age in tobacco. Plant Sci, 168, 1487-1493.
Oweis, T. & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management, 80(1-3), 57-73.
Oweis, T., Pala, M. & Ryan, J. (1998). Stabilizing rainfed wheat yields with supplemental irrigation and nitrogen in a Mediterranean climate. Agronomy Journal, 90(5), 672-681.
Rampino, P., Pataleo, S., Gerardi, C., Mita, G. & Perrotta, C. (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes, Plant Cell Environ, 29, 2143–2152.
Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali Sodi, A. & Soldatini, G.F. (2003). Early Production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. Jornal of Experimental Botany, 54, 2529-2540
Sairam, R. K. & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55-61.
Sairam, R. K. & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): Variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70.
Sairam, R. K. & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.
Scebba, F., Sebastiani, L. & Vitagliano C. (1998). Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation. Physiologia Plantarum 104: 747–752
Sgherri, C. L. M., Maffei, M. & Navari-Izzo, F. (2000). Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. Journal of Plant Physiology, 157(3), 273-279.
Tavakkoli, A. R. & Oweis, T. Y. (2004). The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran. Agricultural Water Management, 65(3), 225-236.
Tenkinel, O., Kanber, R. Yazar, A. & Ozekici, B. (1992). Drought conditions and supplemental irrigation in Turkey. In: International Conference on Supplementary Irrigation and Drought Water Management, 7.
Valentovic, P., Luxova, M. Kolarovic, L. & O. Gasparikova. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ. 52(4): 186-191.
Watanabe, S., Kojima, K., Ide, Y. & Sasaki, S. (2000). Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue and Organ Culture, 63(3), 199.