بررسی مقاومت ژنوتیپ‌های بومی گندم نان نسبت به بیماری سفیدک پودری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضوهیئت علمی موسسه تحقیقات اصلاح وتهیه نهال وبذرکرج

2 دانشجوی سابق کارشناسی ارشد اصلاح نباتات دانشگاه آزاد اسلامی، واحد علوم و تحقیقات

3 مؤسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

5 مرکز تحقیقات کشاورزی و منابع طبیعی اردبیل، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

6 مرکز تحقیقات کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

چکیده

تعداد 17 ژنوتیپ بومی از کلکسیون گندم نان بانک ژن گیاهی ملی ایران برای مقاومت به بیماری سفید پودری در شرایط مزرعه‌ و گلخانه‌ مورد ارزیابی قرار گرفتند. آزمایش مزرعه‌ای در سه کانون آلودگی ساری، گرگان و مغان تحت آلودگی طبیعی انجام گرفت و واکنش ژنوتیپ‌ها در مرحله گیاه بالغ ارزیابی شد. به منظور انجام ارزیابی در مرحله گیاهچه‌ای، جدایه‌های عامل بیماری از مناطق آلودگی جمع‌آوری گردیده و با استفاده از ارقام افتراقی، پاتوتیپ آنها تعیین شد. نتایج نشان داد که متوسط سطح مقاومت ژنوتیپ‌ها نسبت به بیماری در ساری و گرگان، مشابه و پایین‌تر از مغان بود. در مجموع 10 پاتوتیپ متفاوت شناسایی گردید که همگی برای ژن‌های مقاومت Pm3a، Pm3c، Pm3g، Pm4a، Pm5، Pm6، Pm8 و Pm2 دارای فاکتور بیماریزایی بودند. ارقام Shamrock (با ژن مقاومت ناشناخته)، Normandie (Pm1+ Pm2+ Pm9)، Axona (Pm2+Pm3d+Mld)، Maris Dove (Mld+Pm2) و Wembley (Pm12) در برابر همه پاتوتیپ‌ها، واکنش مقاومت نشان دادند. ژنوتیپ‌های 8 و 12 در برابر تمام پاتوتیپ‌ها مقاوم بودند. الگوی واکنش ژنوتیپ 7 مشابه با رقم افتراقی Transfed بود و لذا وجود ژن مقاومت Pm7 در آن احتمال داده شد. ژنوتیپ‌های 4 و 11 در مرحله گیاه بالغ بصورت مقاوم یا نیمه مقاوم ظاهر شدند ولی در مرحله گیاهچه‌ای در برابر تمام پاتوتیپ‌ها حساس بودند و به عنوان ژنوتیپ‌های دارای مقاومت گیاه بالغ شناسایی شدند. نتایج این تحقیق منجر به شناسایی انواع مقاومت گیاهچه‌ای و گیاه بالغ با ترکیبات ژنی متفاوت در ژنوتیپ‌ها مورد ارزیابی شد که در برنامه‌های اصلاحی قابل استفاده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of resistance of Iranian bread wheat landraces to powdery mildew disease

نویسندگان [English]

  • Mohammad Reza Mansourian 2
  • Hossein Azimi 3
  • Mohammadali Dehghan 4
  • Naser Allahyari 5
  • Ramezanali Alitabar 6
2 Former Msc student of Plant Breeding, Islamic Azad University, Science and Research Branch
3 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Iran.
4 Agriculture and Natural Resources Research Center of Golestan, Agricultural Research, Education and Extension Organization (AREEO), Iran.
5 Agriculture and Natural Resources Research Center of Ardebil, Agricultural Research, Education and Extension Organization (AREEO), Iran.
6 Agriculture and Natural Resources Research Center of Mazandaran, Agricultural Research, Education and Extension Organization (AREEO), Iran.
چکیده [English]

A total of 17 wheat landraces were evaluated for resistance to powdery mildew in filed and greenhouse environments. The field experiment was performed at three disease hotspots in Sari, Gorgan and Moghan under natural disease incidence and the reaction of the genotypes was evaluated at adult plant stage. In order to evaluate the resistance of the genotypes at seedling stage, the isolates of the disease were collected from different regions and the pathotypes were identified by inoculation on the differential varieties. The results of field evaluation indicated that average reaction level of genotypes to the disease in Sari and Gorgan was similar and both lower than that of Moghan. A total of ten pathotypes were distinguished, all of which had virulence factors for Pm3a, Pm3c, Pm3g, Pm4a, Pm5, Pm6, Pm8 and Pm2. The varieties Shamrock (with unknown R gene), Normandie (Pm1+ Pm2+ Pm9), Axona (Pm2+Pm3d+Mld), Maris Dove (Mld+Pm2) and Wembley (Pm12) were resistant to all the pathotypes. The presence of Pm7 was postulated in genotype 7 as the resistance spectrum of this genotype was similar to that of Transfed. Genotypes 4 and 11 appeared resistant and moderately resistant at adult plant stage while they were susceptible to all pathotypes at seedling stage and therefore they were identified as genotypes with adult plant resistance. The total results of this research led to identification of seedling and adult plant resistance sources with different resistance gene combinations which could be exploited in breeding programs.

کلیدواژه‌ها [English]

  • germplasm
  • genebank
  • gene postulation
  • resistance components
Ben-David, R., Xie, W., Peleg, Z., Saranga, Y., Dinoor, A. & Fahima, T. (2010). Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theoretical and applied genetics, 121(3): 499-510.
Bennett, F. (1984). Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant pathology, 33:297-300.
Bhullar N.K., Street, K., Mackay, M., Yahiaoui, N. & Keller, B. (2009). Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences, 106:9519-9524.
Bhullar, N. K., Zhang, Z., Wicker, T. & Keller, B. (2010). Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC plant biology, 10(1): 88.
Blanco, A., Gadaleta, A., Cenci, A., Carluccio, A. V., Abdelbacki, A. M. M. & Simeone, R. (2008). Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticumturgidum var. dicoccoides in durum wheat. Theoretical and applied genetics, 117(1): p.135.
El-Shamy, M. M., Emara, H. M. & Mohamed, M. E. (2016). Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in Middle Delta, Egypt. Plant Disease, 100(9): 1927-1930.
Golzar, H, Shankar, M. & D’Antuono, M. (2016). Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeriagraminis f.sp. tritici) populations. Australasian Plant Pathology, 45:347-355.
Griffey, C. A., Das, M. K. & Stromberg, E. L. (1993). Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant disease, 77(6): 618-622.
Gustafson, G. & Shaner, G. (1982). Influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology, 72:746-749.
10. Hao, Y., Parks, R., Cowger, C., Chen, Z., Wang, Y., Bland, D., Murphy, J. P., Guedira, M., Brown-Guedira, G. & Johnson, J. (2015). Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theoretical and applied genetics, 128(3): 465-476.
11. Hautea, R., Coffman, W., Sorrels, M. & Bergstrom, G. (1987).  Inheritance of partial resistance to powdery mildew in spring wheat. Theoretical and Applied Genetics, 73:609-615.
12. Hua, W., Liu, Z., Zhu, J., Xie, C., Yang, T., Zhou, Y., Duan, X., Sun, Q. & Liu, Z. (2009). Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119(2): 223-230.
13. Jeger, M. J. & Viljanen-Rollinson, S. L. H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102(1): 32-40.
14. Ji, X., Xie, C., Ni, Z., Yang, T., Nevo, E., Fahima, T., Liu, Z. & Sun, Q. (2008). Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 159(3): 385-390.
15. Karimi Jashni, M., Torabi, M., Roustaee, A., Etebarian, H., Okhovat, S. & Yazdanpanah, F. (2005).  Evaluation of resistance of some wheat commercial cultivars and advanced lines to four pathotypes of Blumeria graminis f.sp. tritici in greenhouse. Seed and Plant, 21(3): 411-423. (in Farsi)
16. Kingsland, G. C. (1982). Triadimefon for control of powdery mildew of wheat (Erysiphe graminis). Plant Diseases, 66:139-141.
17. Lan, C., Liang, S., Wang, Z., Yan, J., Zhang, Y., Xia, X. & He, Z. (2009). Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 99(10): 1121-1126.
18. Leath, S. & Bowen, K. L. (1989). Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology, 79(2):152-155.
19. Li, G., Fang, T., Zhang, H., Xie, C., Li, H., Yang, T., Nevo, E., Fahima, T., Sun, Q. & Liu, Z. (2009). Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and applied genetics, 119(3): 531-539.
20. Liang, S. S., Suenaga, K., He, Z. H., Wang, Z. L., Liu, H. Y., Wang, D. S., Singh, R. P., Sourdille, P. & Xia, X. C. (2006). Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 96(7): 784-789.
21. Lillemo, M., Asalf, B., Singh, R. P., Huerta-Espino, J., Chen, X. M., He, Z. H. & Bjørnstad, Å. (2008). The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 116(8): 1155-1166.
22. Liu, S., Griffey, C. A. & Maroof, M. A. (2001). Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Science, 41(4): 1268-1275.
23. Liu, Z., Sun, Q., Ni, Z., Nevo, E. & Yang, T. (2002). Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 123(1): 21-29.
24. Liu, Z., Zhu, J., Cui, Y., Liang, Y., Wu, H., Song, W., Liu, Q., Yang, T., Sun, Q. & Liu, Z. (2012). Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theoretical and applied genetics, 124(6):1041-1049.
25. Lutz, J., Katzhammer, M., Stephan, U., Felsenstein, F. G., Oppitz, K. & Zeller, F. J. (1995). Identification of powdery‐mildew‐resistance genes in common wheat (Triticum aestivum L. em. Thell.). V. Old German cultivars and cultivars released in the former GDR. Plant breeding, 114(1): 29-33.
26. Mains, E. B. & Dietz, S. M (1930). Physiologic forms of barley mildew Erysiphe graminis f.sp. hordei Marchal. Phytopathology, 20: 229-239.
27. Marone, D., Russo, M. A., Laidò, G., De Vita, P., Papa, R., Blanco, A., Gadaleta, A., Rubiales, D. & Mastrangelo, A. M. (2013). Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC genomics, 14(1): 562.
28. McIntosh, R. A., Dubcovsky, J., x Rogers, J., Morris, C., Appels, R. & Xia, X. C.(2015). Catalogue of gene symbols for wheat: 2001 Supplement. Available on line at:https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf
29. Miranda, L. M., Murphy, J. P., Marshall, D. & Leath, S. (2006). Pm34: a new powdery mildew resistance gene transferred from Aegilopstauschii Coss. to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 113(8): 1497-1504.
30. Mohler, V., Zeller, F. J., Wenzel, G. & Hsam, S. L. (2005). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 142(1): 161-167.
31. Monazzah, M., Torabi , M., Rezaie, S.  & Razavi, M. (2008). Pathotypes of Blumeria graminis f.sp. tritici, the causal agent of wheat powdery mildew from some regions of Iran. Seed and Plant, 24(1): 161-176. (in Farsi).
32. Monazzah, M., Torabi, M., Rezaie, S., Razavi, M. & Dehghan, M. A. (2009). Evaluation of resistance of some wheat advanced lines to pathotypes of wheat powdery mildew at seedling and adult plant stages. Seed and Plant Improvement Journal, 25-1 (1): 33-49. (in Farsi)
33. Moseman, J. G., Nevo, E., Morshidy, M. E. & Zohary, D. (1984). Resistance of Triticum dicoccoides to infection with Erysiphe graministriticiEuphytica, 33(1): 41-47.
34. Piskarev, V. V., Boyko, N. I. & Kondratieva, I. V. (2017). Sources of agronomically important traits for breeding soft spring wheat (Triticum aestivum L.) in the forest steppe of Novosibirsk region. Russian Journal of Genetics: Applied Research, 7(3): 281-289.
35. Razavi, M., Dehghan, M. A., Safavi, S. A., Barari, H., Torabi, M., Karimi Jashni, M. & Kazemi, H. (2009). Evaluation of the field and seedling resistance of some advanced and elite lines of wheat to Blumeriagraminis f.sp. tritici the causal agent of wheat powdery mildew in Iran. Applied Entomology and Phytopathology, 77(1): 133-150. (in Farsi).
36. Razavi, M., Karimi Jashni, M., Dehghan, M. A., Safavi, S. A. & Barari, H. (2010). Study on the variability for virulence in Blumeriagraminis f.sp. tritici cause of wheat powdery mildew using trap nursery in Iran. Applied Entomology and Phytopathology, 78(1): 97-106. (in Farsi)
37. Reader, S. M. & Miller, T. E. (1991).The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 53(1): 57-60.
38. Roberts, J. & Caldwell, R. (1970). General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in Knox Wheat. Phytopathology, 60:1310. 
39. Rong, J. K., Millet, E., Manisterski, J. & Feldman, M. (2000). A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 115(2):121-126.
40. Saari, E. E. & Prescott, J. M. (1975). A scale for appraising the foliar intensity of wheat disease. Plant Disease Reporter, 59: 377-380.
41. Shannon, C. E. 1948. A Mathematical theory of communication. Bell System Technical Journal, 27: 379-423.
42. Singrun, C., Rauch, P., Morgounov, A., Hsam, S. & Zeller, F. (2004). Identification of powdery mildew and leaf rust resistance genes in common wheat (Triticum aestivum L.). Wheat varieties from the Caucasus, Central and Inner Asia. Genetic Resources and Crop Evolution, 51(4): 355-370.
43. Srichumpa, P., Brunner, S., Keller, B. & Yahiaoui, N. (2005). Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiology, 139(2): 885-895.
44. Stubbs, R., Prescott, J. M., Saari, E. E. & Dubin, H. J. (1986). Cereal disease methodology manual. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico.
45. Szunics L. & Szunics L. U. (1999). Wheat powdery resistance genes and their application in practice. Acta Agronomica Hungaric., 47: 69–89.
46. Yahiaoui, N., Brunner, S. & Keller, B. (2006). Rapid generation of new powdery mildew resistance genes after wheat domestication. The Plant Journal, 47(1): 85-98.
47. Yahiaoui, N., Kaur, N. & Keller, B. (2009). Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. The Plant Journal, 57(5): 846-856.
48. Yahiaoui, N., Srichumpa, P., Dudler, R. & Keller, B. (2004). Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant Journal, 37(4): 528-538.
49. Zahravi, M., Azimi, H., Dehghan, M.A. Allahyari, N., Alitabar, R. & Pourmoghaddam, H. (2017). Determinaton of resistance sources to powdery mildew (Blumeria graminis f.sp. tritici) in Iranian bread wheat germplasm. Seed and Plant Improvement journal, 33(1): 45-65. (in Farsi)
50. Zeller, F. J., Lutz, J., Reimlein, E. L., Limpert, E. & Koenig, J. (1993). Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L). II. French cultivars. Agronomie, 13(3): 201-207.
51. Zhang, H., Guan, H., Li, J., Zhu, J., Xie, C., Zhou, Y., Duan, X., Yang, T., Sun, Q. & Liu, Z. (2010). Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and applied genetics, 121(8): 1613-1621.