برخی پاسخ‌های بیوشیمیایی لوبیا (Phaseolus vulgaris L.) به کنه تارتن دو نقطه‌ای (Tetranychus urticae Koch)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج

2 پردیس کشاورزی و منابع طبیعی کرج، دانشکده علوم زراعی و دامی، گروه زراعت و اصلاح نباتات

3 گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج

چکیده

القای مقاومت در دو رقم مقاوم و حساس (به ترتیب، ناز و اختر) لوبیا نسبت به آلودگی کنه تارتن دونقطه‌ای، Tetranuychus urticae Koch (Acari; Tetranychidae)، مورد مطالعه قرار گرفت. در این مطالعه صفات محتوای فنل کل، مالون دی‌آلدئید، ظرفیت آنتی اکسیدانی، و فعالیت آنزیم‌های دفاعی گیاه )گایاکول پراکسیداز (GPX) و آسکوربات-پراکسیداز((APX) در گیاه غیر آلوده (شاهد)، و آلوده (1، 3 و 5 روز پس از آلودگی) اندازه‌گیری شد. مقادیر فنل کل و ظرفیت آنتی‌اکسیدانی رقم ناز (بیشینه: 8/0 و 67/53، به ترتیب) نسبت به اختر بیشتر بود، اما محتوای مالون‌دی‌آلدئید در رقم ناز پایین بود. همچنین، رقم ناز فعالیت آنزیمی بیشتری (GPX: 29/37 و APX 87/21) را نسبت به رقم اختر نشان داد. نتایج حاکی از این بوده‌اند که آنزیم‌های دفاعی گیاه مانند GPX و APX در مقاومت لوبیا نسبت به T. urticae دخیلند. بنابراین افزایش فعالیت GPX و APX همراه با تجمع فنل کل،مقاومت گیاه را نسبت به T. urticae افزایش می-دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Some biochemical responses of common bean (Phaseolus vulgaris L.) to two spotted spider mite (Tetranychus urticae Koch)

نویسندگان [English]

  • Marie Shoorooei 1
  • Abdolhadi Hossein zadeh 2
  • Reza Maali Amiri 1
  • Hossein Allahyari 3
1 Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj. Iran
چکیده [English]

Induced resistance was studied in two resistance and susceptible (Naz and Akhtar, respectively) common bean cultivars against two spotted spider mite, Tetranuychus urticae Koch (Acari; Tetranychidae(. In this study the amounts of total phenols, malondialdehyde, antioxidant activity, and the activity of plant defensive enzymes [guaiacol peroxidase (GPX), and ascorbate peroxidase (APX)] were measured for uninfected (control) and infected (1, 3 and 5 days after infestation) plants. The amounts of total phenols and antioxidant activity were higher in cultivar Naz (max: 0.8 and 53.67 respectively) compared to Akhtar, but the amount of malondialdehyde was low in Naz. Also, cultivar Naz exhibited greater enzymatic activity (GPX: 37.29 and APX: 21.87), than cultivar Akhtar. These results suggested that the plant defensive enzymes such as GPX, and APX were involved in common bean resistance to T. urticae. Thus, increased activity of GPX and APX along with accumulation of total phenols increased plant resistance to T. urticae.

کلیدواژه‌ها [English]

  • "Defensive enzymes"
  • "Secondary metabolites"
  • "Spider mite"
  • "Common bean"
Arimura, G. I., Matsui, K. & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant and Cell Physiology50, 911-923.
Asada, K. (1992). Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants. Physiologia Plantarum85, 235-241.
Barbehenn, R., Cheek, S., Gasperut, A., Lister, E. & Maben, R. (2005). Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. Journal of chemical ecology31(5), 969-988.
Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research14, 93-107.
Bailly, C., Benamar, A., Corbineau, F. & Côme, D. (2000). Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research10, 35-42.
Barbehenn, R., Dukatz, C., Holt, C., Reese, A., Martiskainen, O., Salminen, J. P. & Constabel, C. P. (2010). Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia164, 993-1004.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry72(1-2), 248-254.
Cakmak, I. & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum83, 463-468.
Camejo, D., Martí, M. C., Román, P., Ortiz, A. & Jiménez, A. (2010). Antioxidant system and protein pattern in peach fruits at two maturation stages. Journal of agricultural and food chemistry58, 11140-11147.
10. Çetin, H., Arslan, D. & Musa Özcan, M. (2011). Influence of Eriophyid mites (Aculus olearius Castagnoli and Aceria oleae (Nalepa) (Acarina: Eriophyidae)) on some physical and chemical characteristics of Ayvalık variety olive fruit. Journal of the Science of Food and Agriculture91, 498-504.
11. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D. J., Coutu, J. & Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell17, 268-281.
12. Diaz-Montano, J., Reese, J. C., Schapaugh, W. T. & Campbell, L. R. (2006). Characterization of antibiosis and antixenosis to the soybean aphid (Hemiptera: Aphididae) in several soybean genotypes. Journal of economic entomology99, 1884-1889.
13. Dowd, P. F. (1994). Enhanced maize (Zea mays L.) pericarp browning: associations with insect resistance and involvement of oxidizing enzymes. Journal of chemical ecology20, 2777-2803.
14. Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry129, 345-350.
15. Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry48, 909-930.
16. Goel, A. & Sheoran, I. S. (2003). Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural ageing. Biologia plantarum46, 429-434.
17. Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G. & Lee, D. (2010). Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Interactions4, 45-55.
18. Han, Y., Wang, Y., Bi, J. L., Yang, X. Q., Huang, Y., Zhao, X. & Cai, Q. N. (2009). Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of chemical ecology35(2), 176-182.
19. Howe, G. A. & Jander, G. (2008). Plant immunity to insect herbivores. Annu. Rev. Plant Biol.59, 41-66.
20. Johnson, K. S. & Felton, G. W. (2001). Plant phenolics as dietary antioxidants for herbivorous insects: a test with genetically modified tobacco. Journal of chemical ecology27, 2579-2597.
21. Kaur, H., Gupta, A. K., Kaur, N. & Sandhu, J. S. (2009). Differential response of the antioxidant system in wild and cultivated genotypes of chickpea. Plant growth regulation57, 109.
22. Kielkiewicz, M. & Van de Vrie, M. (1990). Within-leaf differences in nutritive value and defence mechanism in chrysanthemum to the two-spotted spider mite (Tetranychus urticae). Experimental and Applied Acarology10(1), 33-43.
23. Lin, J. Y. & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chemistry101, 140-147.
24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J biol Chem193, 265-275.
25. Martínez-Ferrer, M. T., Jacas, J. A., Ripollés-Moles, J. L. & Aucejo-Romero, S. (2006). Approaches for sampling the twospotted spider mite (Acari: Tetranychidae) on clementines in Spain. Journal of economic entomology99, 1490-1499.
26. Meier, U. (1997). Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag.
27. Migeon A., Dorkeld F. (2006-2016).  Spider Mites Web: a comprehensive database for Tetranychidae [Internet] Available from: http://www.montpellier.inra.fr/CBGP/spmweb. Last accessed on November 2016
28. Migeon, A., Nouguier, E. & Dorkeld, F. (2011). in Trends in Acarology,  Springer, 557-560.
29. Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science9, 490-498.
30. Moran, P. J. (2001). The effects of wilt symptom development and peroxidase induction on interactions between vascular wilt bacteria and cucumber beetles. Entomologia experimentalis et applicata98, 149-156.
31. Moustafa-Farag, M., Bingsheng, F., Malangisha Guy, K., Hu, Z., Yang, J. & Zhang, M. (2016). Activated antioxidant enzymes-reduced malondialdehyde concentration, and improved mineral uptake-promoted watermelon seedlings growth under boron deficiency. Journal of Plant Nutrition39(14), 1989-2001
32. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology22, 867-880.
33. Racchi, M. L. (2013). Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp. Antioxidants2, 340-369.
34. Saeidi, Z. & Slehi, F. (2005). The Study of resistance of selected lines from local common bean variety to two spotted spider mite. Methods in enzymology105, 121-126.
35. Scully, B. T., East, D. A., Edelson, J. V. & Cox, E. L. (1991). Resistance to the two-spotted spider mite in muskmelon. In Florida State Horticultural Society (pp. 276-278).
36. Shannon, M. C. & Grieve, C. M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae78, 5-38.
37. Sharma, H. C. (2007). Host plant resistance to insects: modern approaches and limitations. Indian Journal of plant protection35(2), 179-184.
38. Stumpf, N. & Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology94, 1577-1583.
39. Sytykiewicz, H. (2014). Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings. PLoS One9(4), e94847.
40. Tahmasebi, Z., Mohammadi, H., Arimura, G. I., Muroi, A. & Kant, M. R. (2014). Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. Experimental and Applied Acarology63(2), 217-239.
41. Trevisan, M. T. S., Scheffer, J. J. & Verpoorte, R. (2003). Peroxidase activity in hop plants after infestation by red spider mites. Crop Protection22, 423-424.
42. War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S. & Sharma, H. C. (2012a). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior7, 1306-1320.
43. War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. (2012b). Differential defensive response of groundnut germplasms to Helicoverpa armigera (Hubner)(Lepidoptera: Noctuidae). Journal of Plant Interactions7, 45-55.
44. War, A. R., Munghate, R. S. & Sharma, H. C. (2015). Expression of different mechanisms of resistance to insects in groundnut under field conditions. Phytoparasitica43(5), 669-677.
45. Wei, H., Zhikuan, J. & Qingfang, H. (2007). Effects of herbivore stress by Aphis medicaginis Koch on the Malondialdehyde contents and the activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica27(6), 2177-2183
46. Zhang, S. Z., Hua, B. Z. & Zhang, F. (2008). Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interactions2(4), 209-213