Alvarado, V. & Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25(8), 1061-1069.
Andreucci, M. P., Moot, D. J., Black, A. D. & Sedcole, R. (2016). A comparison of cardinal temperatures estimated by linear and nonlinear models for germination and bulb growth of forage brassicas. European Journal of Agronomy. 81(1), 52-63.
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248-260.
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer.
Chantre, G. R., Batlla, D., Sabbatini, M. R. & Orioli, G. (2009). Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany, 103(8), 1291-1301.
Covell, S., Ellis, R. H., Roberts, E. H. & Summerfield, R. J. (1986).The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany, 37(5), 705-715.
Derakhshan, A., Moradi-Telavat, M.R., Siadat, S.A. (2016). Hydrotime analysis of Melilotus officinalis, Sinapis arvensis and Hordeum vulgare seed germination. Iranian Journal of Plant Protection, 30(3), 518-532. (In Farsi)
Ellis, R. H., Covell, S., Roberts, E. H. & Summerfield, R. J. (1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany, 37(10), 1503-1515.
Evans, M., Hastimgs, N. & Peacock, B. (2000). Statistical distributions (3th ed.). John Wiley & Sons, Inc, New York.
10. Hardegree, S. P. (2006). Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany, 98(4), 827-834.
11. Hardegree, S. P. & Van Vactor, S. S. (2000).Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany, 85(3), 379-390.
12. Huo, H. & Bradford, K. J. (2015). Molecular and hormonal regulation of thermoinhibition of seed germination. In J. V. Anderson (Ed), Advances in Plant Dormancy. (pp. 3-33). Springer International Publishing Switzerland.
13. Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R. & Cousens, R. D. (2013). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53(2), 89-101.
14. Mesgaran, M. B., Rahimian Mashhadi, H. R., Alizadeh, H., Ohadi, S. & Zare, A. (2014). Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science, 9(2), 105-118. (In Farsi)
15. Soltani, E., Oveisi, M., Soltani, A., Galeshi, S., Ghaderifar, F. & Zeinali, E. (2014). Seed germination modeling of volunteer canola as affected by temperature and water potential: hydrothermal time model. Iranian Journal of Weed Research, 6(1), 23-38. (In Farsi)
16. Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M. & Sarparast, R. (2006). Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1-4), 156-167.
17. Watt, M. S., Bloomberg, M., & Finch-Savage, W. E. (2011). Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell & Environment, 34(5), 870–876.
18. Watt, M. S., Xu, V. & Bloomberg, M. (2010). Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling, 221(9), 1267–1272.