مقایسه توابع توزیع احتمال در مدل‌های زمان‌گرمایی جهت مدل‌سازی جوانه‌زنی کلزای بهاره به دما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه کشاورزی و منابع طبیعی رامین

2 مرکز تحقیقات کشاورزی

چکیده

مدل‌های مبتنی بر مفهوم زمان‌گرمایی ابزار مفیدی برای پیش‌بینی جوانه‌زنی بذر در رابطه با زمان و دما هستند. در این آزمایش که در سال 1395 در دانشگاه کشاورزی و منابع طبیعی رامین انجام شد، مدل جوانه‌زنی-گرمایی بر مبنای هفت تابع توزیع احتمال (لجستیک، ویبول، گامبل، لوگ‌لجستیک، نرمال‌معکوس، لوگ‌نرمال و گاما) توسعه یافت و دوره‌های زمانی جوانه‌زنی پیش‌بینی‌شده توسط این مدل‌ها برای دو رقم کلزای بهاره (RGS003 و ساری‌گل) با خروجی‌های مدل جوانه‌زنی-‌گرمایی نرمال مقایسه شد. آزمون جوانه‌زنی برای هر رقم در 11 دمای ثابت 8، 12، 16، 20، 24، 28، 32، 33، 34، 35 و 36 درجه سانتی‌گراد انجام شد. نتایج نشان داد که مدل‌ زمان‌گرمایی لوگ‌نرمال برازش بهتری به دوره‌های زمانی جوانه‌زنی هر دو رقم RGS003 (AICc= -1173) و ساری‌گل (AICc= -1180) داشت. بر اساس خروجی‌های این مدل، دمای پایه برای جوانه‌زنی ارقام RGS003 و ساری‌گل بترتیب 85/5 و 60/5 درجه سانتی‌گراد برآورد شد. زمان‌گرمایی زیر حد بهینه برای شروع جوانه‌زنی ارقام RGS003 و ساری‌گل به ترتیب 40/118 و 00/120 درجه سانتی‌گراد ساعت و زمان‌گرمایی مورد نیاز برای تکمیل جوانه‌زنی این ارقام در دماهای بیشتر ‌از حد ‌بهینه بترتیب 07/29 و 47/31 درجه سانتی‌گراد ساعت پیش‌بینی شد. هر دو رقم کلزا در دمای فراتر از 17/33 درجه سانتی‌گراد بازدارندگی گرمایی جوانه‌زنی نشان دادند. ضرایب برآورد شده در این آزمایش می‌توانند در مدل‌های شبیه‌سازی جوانه‌زنی سایر ارقام کلزا نیز استفاده شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of probability distribution functions in thermal-time models for modeling of spring oilseed rape germination to temperature

نویسندگان [English]

  • seyed ata siadat 1
  • Mohammad reza Moradi telavat 1
  • Bahram Andarzian 2
1 Rmain Agriculture and Natural Resource University
2
چکیده [English]

The models based on thermal-time concept are useful tools for predicting germination in relation to time and temperature. In this study, conducted in 2016 at Ramin Agriculture and Natural Resources University, thermal-germination model was developed based on seven probability distribution function (Logistic, Weibull, Gumbel, Loglogistic, Inverse-Normal, Log-Normal and Gamma) and predicted germination time courses by these models for two spring oilseed rape cultivars (RGS003, Sarigol) were compared with the Normal thermal-germination outputs. Germination test were conducted at eleven constant temperature regimes of 8, 12, 16, 20, 24, 28, 32, 33, 34, 35 and 36 ºC. Results indicated that the Log-Normal thermal-germination model gave best fit to germination time courses of both cvs. RGS003 (AICc=-1173) and Sarigol (AICc=-1180). Based on the outputs of this model, base temperature for germination of cvs. RGS003 and Sarigol were estimated to be 5.85 and 5.60 ºC, respectively. The suboptimal thermal-time to initiate germination were predicted as 118.40 ºC h in cv. RGS003 and 120.00 ºC h in cv. Sarigol, While thermal-time required to complete germination at supra-optimal temperatures were estimated to be 29.07 ºC h in cv. RGS003 and 31.47 ºC h in cv. Sarigol. Also, both oilseed rape cultivars showed thermoinhibition beyond averaged temperature of 33.17 ºC. Estimated parameters in this study can be used in crop simulation models.

کلیدواژه‌ها [English]

  • Thermoinhibition
  • Log-normal distribution
  • cardinal temperatures
  • Thermal-germination model
  1. Alvarado, V. & Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25(8), 1061-1069.
  2. Andreucci, M. P., Moot, D. J., Black, A. D. & Sedcole, R. (2016). A comparison of cardinal temperatures estimated by linear and nonlinear models for germination and bulb growth of forage brassicas. European Journal of Agronomy. 81(1), 52-63.
  3. Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248-260.
  4. Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer.
  5. Chantre, G. R., Batlla, D., Sabbatini, M. R. & Orioli, G. (2009). Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany, 103(8), 1291-1301.
  6. Covell, S., Ellis, R. H., Roberts, E. H. & Summerfield, R. J. (1986).The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany, 37(5), 705-715.
  7. Derakhshan, A., Moradi-Telavat, M.R., Siadat, S.A. (2016). Hydrotime analysis of Melilotus officinalis, Sinapis arvensis and Hordeum vulgare seed germination. Iranian Journal of Plant Protection, 30(3), 518-532. (In Farsi)
  8. Ellis, R. H., Covell, S., Roberts, E. H. & Summerfield, R. J. (1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany, 37(10), 1503-1515.
  9. Evans, M., Hastimgs, N. & Peacock, B. (2000). Statistical distributions (3th ed.). John Wiley & Sons, Inc, New York.

10. Hardegree, S. P. (2006). Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany, 98(4), 827-834.

11. Hardegree, S. P. & Van Vactor, S. S. (2000).Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany, 85(3), 379-390.

12. Huo, H. & Bradford, K. J. (2015). Molecular and hormonal regulation of thermoinhibition of seed germination. In J. V. Anderson (Ed), Advances in Plant Dormancy. (pp. 3-33). Springer International Publishing Switzerland.

13. Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R. & Cousens, R. D. (2013). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53(2), 89-101.

14. Mesgaran, M. B., Rahimian Mashhadi, H. R., Alizadeh, H., Ohadi, S. & Zare, A. (2014). Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science, 9(2), 105-118. (In Farsi)

15. Soltani, E., Oveisi, M., Soltani, A., Galeshi, S., Ghaderifar, F. & Zeinali, E. (2014). Seed germination modeling of volunteer canola as affected by temperature and water potential: hydrothermal time model. Iranian Journal of Weed Research, 6(1), 23-38. (In Farsi)

16. Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M. & Sarparast, R. (2006). Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1-4), 156-167.

17. Watt, M. S., Bloomberg, M., & Finch-Savage, W. E. (2011). Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell & Environment, 34(5), 870–876.

18. Watt, M. S., Xu, V. & Bloomberg, M. (2010). Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling, 221(9), 1267–1272.