ارزیابی کارایی مدل WOFOST برای شبیه سازی رشد و نمو ذرت برای الگوی کشت تابستانه در شرایط اقلیمی نیمه گرمسیری جنوب کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل از دانشگاه جرفت

2 هیئت علمی دانشگاه جیرفت

3 استادیار گروه زراعت و باغبانی دانشگاه جیرفت-هیات علمی

چکیده

به منظور ارزیابی مدل WOFOST در الگوی کشت تابستانه مناطق گرمسیری برای تخمین عملکرد ذرت دانه‌ای (Zeo maize) در منطقه جیرفت انجام گردید. پایگاه داده‌های ورودی مدل شامل داده‌های آب و هوا (تشعشع خورشیدی، درجه حرارت حداقل و حداکثر و بارندگی)، داده‌های گیاه (مراحل فنولوژیک، عملکرد دانه، زیست‌توده)، داده‌های خاک (ویژگی‌های فیزیکی و شیمیایی خاک) می‌باشد. متغیرهای زمان وقوع مراحل فنولوژیک، ماده خشک در هر مرحله، عملکرد و زیست‌توده از یک آزمایش مزرعه‌ای که به منظور مقایسه ارقام و تاریخ‌های مختلف کاشت انجام گرفته بود، ثبت گردید. در مرحله بعد مدل براساس داده‌های واقعی واسنجی و ارزیابی گردید. نتایج نشان‌داد مقادیر ریشه میانگین مربعات خطا (RMSE) برای عملکرد دانه، زیست‌توده و شاخص برداشت به ترتیب 06/9، 24/4 و 11/10 می‌باشد. مقدار ضریب کارایی مدل (E) برای عملکرد دانه، زیست‌توده و شاخص برداشت برای سال اول به ترتیب 99/0، 87/0 و82/0 بود، که بیانگر دقت بالای مدل در شبیه‌سازی عملکرد و زیست‌توده است. به طورکلی نتایج حاصل از ارزیابی مدل WOFOSTنشان‌داد که این مدل از کارایی مناسبی درشرایط آب و هوایی نیمه گرمسیری منطقه جیرفت برخوردار است و نتایج شبیه‌سازی شده مطابقت خوبی با مقادیر اندازه‌گیری شده دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of WOFOST model for growth and development Simulation of maize (Zea. mays. L) under summer cropping system condition in tropical regions of Jiroft, Iran

نویسندگان [English]

  • mahin Afzali Sardoo 1
  • Javad Taei 2
  • Madieh Amirinezhad 3
1
2
3
چکیده [English]

Crop models are the major tools which help to understand how the interactions factors including soil, plant and atmosphere affecting plant growth. This study was conducted in order to evaluate WOFOST model for estimate maize (Zeo maize) yield production of summer cropping system of maize in tropical conditions in Jiroft region. Model input data base includes the Climate data (daily parameters of solar radiation, temperature and rainfall), plant data (time of germination, flowering and maturity, grain yield and dry matter) and soil data (physical and chemical properties). Plant variables of model includes of time of phenological stages, dry matter production, yield and biomass which collected from field experiment which performed in different planting dates and genotype. At the next step model was calibrated and evaluated with observed field data. The results showed RMSE, for grain yield, biomass and harvest index were respectively 9.06, 4.24 and 10.11. The model efficiency coefficient (E) for grain yield, biomass and harvest index was respectively 0.99, 0.87, and 0.82. So this results presented high precision of model simulation results. The results of WOFOST evaluation showed that the efficiency of model is good for maize summer cropping system under tropical climatic conditions of Jiroft region.

کلیدواژه‌ها [English]

  • maize
  • subtropical climate
  • Jiroft
  • modeling
  • WOFOST
  1. Allen, R. Overman Richard, V. & Scholtz, I. (2002). Mathematical models of crop growth and yield. University of Florida Gainesville, Florida, U.S.A. Marcel Dekker. 344pp.
  2. Amiri, E. & Rezaei, M. (2009). Testing the modeling capability of ORYZA2000 under water-nitrogen limit conditions in Northern Iran. World Applied Science Journal, 6 (8), 1113-1122.
  3. Bafkar, A., Boromandnasab, S., Behzad, M. & Farhadi Bansoule, B. (2011). Estimation of potential yield of grain maiz in Mahidasht Kermanshah using WOFOST, a crop growth simulation model. Iranian Journal of Field Crop Research, 42 (4), 799-808. (In Farsi)
  4. Boogaard, H. L., vanDiepen, C. A., Rötter, R. P., Cabrera, J. M. C. A. & Van Laar, H.H. (1998). User’s guide for the WOFOST 7.1crop growth simulation model and WOFOST Control Center1.5. Technical document 52, DLO Winand Staring Centre, Wageningen, Netherlands. Calif. (USA): Addison-Wesley Publishing Company. 144pp.
  5. Ceglar, A. & Kajfez-Bogataj, L. (2012). Simulation of maize yield in current and changed climatic conditions: Addressing modelling uncertainties and the importance of bias correction in climate model simulations. European Journal of Agronomy, 37, 83–95.
  6. Dua, V. K., Govindakrishnan. P. M. & Singh, B. P. (2014). Calibration of WOFOST model for potato in India. Potato Journal, 41 (2), 105-112.
  7. Eitzinger, J., Trnka, M., Hosch, J., Zalud, Z. & Dubrovsky, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Journal of Ecological Modeling, 171: 223-246.
  8. Gharineh, M., Bakhshandeh, A., Andrzyan, B. & Fayezizadeh, N. (2012). Agroclimatic zoning of Khuzestan province for potential yield wheat using WOFOST model. Journal of Agroecology, 4 (3): 255-264. (In Farsi).
  9. Goudriaan, J. (1977). Crop Micrometeorology: A Simulation Study. Simulation Monographs, Pudoc,Wageningen. 249pp.

10. Hammer, G. L. & Muchow, R. C. (1994). Assessing climatic risk to sorghum production in water limited subtropical environments. I. Development and testing of a simulation model. Field Crops Research, 36, 221-234.

11. Hammer, G. L., Carberry, P. S. & Muchow, R. C. (1993). Modeling genotype and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crops Research, 33, 293-310.

12. Hayes, M. J. & Decker, W. L. (1996). Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. International Journal of Remote Sensing, 17, 3189–3200.

13. Kalra, N., Chander, S., Pathak, H., Aggarwal, P. K., Gupta, N. C., Sehgal, M. & Chakarborty, D. (2008). Impact of climate change on agriculture. Outlook on Agriculture, 36, 109-118

14. Kassi, B. T., Van Ittersum, M. K., Hengsdijk, H., Asseng, S., Wolf, J. & Rötter, R. P. (2014). Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crops Research, 160, 41–53.

15. Marletto, V., Ventura, F., Fontana, G. & Tomei, F. (2007).Wheat growth simulation and yield prediction with seasonal forecasts and numerical model. Agriculture and Forest Meteorology, 147(1), 71-79.

16. Monteith, J. L. (1981). Climatic variation and the growth of crops. Meteorological Science, 107 (546), 749–774.

17. Nassiri Mahalati, M., Koocheki, A., Kamali, G. A. & Shahandeh, H. (2006). Potential impact of climate change on rain fed wheat production in Iran. Agronomy and Soil Science, 52, 113-124.

18. Nasiri Mahallati, M. (2008). Modeling potential crop growth process. Mashhad University Press. 280pp (In Farsi).

19. Rinaldy M. L., Losavio, N. g, E. & Flagella, Z. (2003). Evaluation of OILCROP-SUN model for sunflower in southern Italy.Agricultural Systems. 78, 17-30.

20. Singh, A. K., Tripathy, R. & Chopra, U. K. (2008). Evaluation of CERES Wheat and Crop System models for water-nitrogen interactions in wheat crop. Agricultural Water Management, 95, 776-786.

21. Taei Semiromi, J., Ghanbari, A., Amiri, E., Ghaffari, A. A., Syahsar, B. & Ayoubi, Sh. (2013). Agro ecological zoning of wheat in the Borujen Watershed: Rianfed and irrigated wheat cropping System Evaluation. Journal of Sustainable agriculture and Production Science, 22 (4), 1-12. (In Farsi)

22. Van Keulen, H. & Wolf, J. (1986). Modelling of agricultural production: weather, soils and crops. Simulation Monographs. Wageningen. The Netherlands. 479pp.

23. Walpole, R. E., Myers, R. M. & Myers, S. L. (1998). Probability and Statistics for Engineers and Scientists. (6th ed) New Jersey: Prentice Hall International.823pp.

24. Willmott, C. J. (1982). Some comments on the evaluation of model performance. American Meteorology Society. 63: 1309-1313.

25. Wolf, J. & Van Diepen, C. A. (1994). Effects of climate change on silage maize production potential in the European Community. Agriculture and Forest Meteorology, 71 (1/2), 33-60.

26. Wolf, J., Mandryk, M., Kanellopoulos, A., Oort, P.V., Schaap, B., Reidsma, P. & Ittersum, M. V. (2010). Methodologies for analyzing future farming systems and climate change impacts in Flevoland as applied within the AgriAdapt project. Wageningen University and Research Centre, Wageningen. 108pp.

27. Wolfram, S. (1991). Mathematica: a system for doing mathematics by computer (2nd Ed.). Addison Wesley Longman Publishing Co., Redwood City, CA, USA. 961pp.

28. Wu, D., (2008). Impact of spatial- temporal variations of climatic variables on summer maize yield in North China Plain. European Journal of Agronomy, 24 (3), 226-235.