بررسی تأثیر اندول استیک اسید و آبسیزیک اسید بر غده‌زائی در گیاه سیب‌زمینی (Solanum tuberosum)

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه زیست شناسی دانشگاه آزاد اسلامی واحد مرودشت

چکیده

در این پژوهش تأثیر هورمون‌های اندول استیک اسید (IAA) و آبسیزیک اسید (ABA) بر غده‌زائی در سیب‌زمینی رقم آگریا (Agria) در شرایط گلخانه‌ای بررسی شد. ریز غده‌های بدون عامل‌های بیماریزا به گلدان‌هایی با خاک مناسب و ضدعفونی شده منتقل شدند. گیاهچه‌ها در طرح فاکتوریل در مرحلۀ 7-8 برگی با غلظت‌های 0، 5 و 10 میکرومولار IAA و 0، 5/2 و 5 میکرومولار ABA محلول‌پاشی شدند. نتایج نشان داد، با کاربرد IAA سطح برگ کاهش ولی با کاربرد ABA سطح برگ افزایش پیدا می‌کند. همچنین با افزایش غلظت هر دو هورمون شمار برگ و شمار غده افزایش پیدا می‌کند. افزون بر این با افزایش غلظت ABA، وزن غده و وزن اندام‌های هوائی کاهش پیدا می‌کند. نتایج نشان داد، با افزایش IAA، سبزینۀ (کلروفیل) کل و کاروتنوئیدها افزایش ولی با افزایش ABA، میزان آن‌ها کاهش پیدا می‌کند. همچنین با افزایش IAA، فعالیت آنزیم‌های پراکسیداز و پلی فنل اکسیداز در برگ گیاهان یک روند کاهشی دارند درصورتی‌که با افزایش ABA روند فعالیت این آنزیم‌ها افزایشی است. به نظر می‌رسد که تأثیر هورمون‌های اکسین و آبسیزیک اسید روی غده‌زائی در سیب‌زمینی به‌صورت متضاد باشد، هرچند این تأثیر ناهمسازی (آنتی‌گونیستی) به‌صورت کامل (100درصد) نیست و به غلظت هورمون‌های به‌کاررفته و شرایط و مراحل رشد و اندام‌های مورد بررسی در گیاه بستگی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of indole acetic acid and abscisic acid on the tuberization in potato (Solanum tuberosum)

نویسنده [English]

  • Mohammad Reza Hadi
Assistant Professor, Department of Biology, Islamic Azad University, Marvdasht Branch, Marvdasht, Iran
چکیده [English]

This study was carried out to evaluate the effects of indole acetic acid (IAA) and abscisic acid (ABA) on the tuberization in potato (CV. Agria) under greenhouse conditions. The potato mini-tubers (without any infection) were planted in pots containing pasteurized soil. The 4 weeks-old plants (7-8 leaves) were treated by spraying the foliage with 0, 5 and 10 µM (IAA) and with 0, 2.5 and 5 µM ABA weekly for 3 weeks. The results showed that application of IAA decreased the leaf area, but application of ABA increased the leaf area. With increasing concentrations of both hormones also increased the leaves numbers and tubers numbers. In addition, by increasing the concentration of ABA reduced the shoot weight and tuber weight. The results showed that total chlorophyll and carotenoids increased in leaves with increase in IAA applied, but they are reduced by increasing ABA levels. Also, by increasing IAA, polyphenol oxidase and peroxidase activities in leaf is a downward trend, while with increasing ABA, the activity of these enzymes is a upward trend. It seems that the influences of hormones auxin and abscisic acid on the tuberization in potato as an antagonistic effect however, this effect is not completely (100%) and depends on applied concentrations of hormones, conditions and growth stages and plant organs examined.

کلیدواژه‌ها [English]

  • Auxin
  • Abscisic acid
  • Chlorophyll
  • Carotenoids
  • tuberization
  • Potato (Solanum tuberosum)
  1. Auldridge, M. E., Block, A., Vogel, J. T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D. R. & Klee, H. J. (2006). Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. The Plant Journal, 45(6), 982-993.
  2. Balali, G. R., Hadi, M. R., Naderi, A. G., Eslami, A. H., Yavari, P. & Bidram, H. (2008). Effect of pot size, date of planting and germplasm on mini tuber production of potato. African Journal of Biotechnology, 7(9), 1265-1270.
  3. Battal, P., Turker, M. & Tileklioğlu, B. (2003). Effects of different mineral nutrients on abscisic acid in maize (Zea mays). In Annales Botanici Fennici, 40, 301-308.
  4. Carrera, E., Bou, J., Garcia-Martinez, J. L. & Prat, S. (2000). Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant Journal, 22, 247-256.
  5. Cline, M. G. & Oh, C. (2006). A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Annals of botany, 98(4), 891-897.
  6. Davies, P. (2013). Plant hormones: physiology, biochemistry and molecular biology. Springer Science & Business Media.
  7. Ewing, E. E. (1995). The role of hormones in potato (Solanum tuberosum L.) tuberization. In Plant hormones (pp. 698-724). Springer Netherlands.
  8. George, E. F., Hall, M. A. & De Klerk, G. J. (2008). Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In Plant propagation by tissue culture (pp. 175-204). Springer Netherlands.
  9. Hadi, M. R. (2012) Plant Metabolism (Vol. 1). Islamic Azad University Press, Marvdasht Branch (Sciences and Research Branch), 1-376. (in Farsi)
  10. Hadi, M. R. (2013) Mechanism of Plant Hormones Action (Vol. 1). Islamic Azad University Press, Marvdasht Branch (Sciences and Research Branch), 1-371. (in Farsi)
  11. Hadi, M. R. (2014) Mechanism of Plant Hormones Action (Vol. 2). Isfahan Negar Press, Negar khane 24, 1-386. (in Farsi)
  12. Haisel, D., Pospíšilová, J., Synková, H., Schnablová, R. & Baťková, P. (2006). Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica, 44(4), 606-614.
  13. Hansen, H. & Grossmann, K. (2000). Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology, 124(3), 1437-1448.
  14. Hu, Y. J., Shi, L. X., Sun, W. & Guo, J. X. (2013). Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China. Botanical Studies, 54(1), 1.
  15. Jackson, S. D. & Prat, S. (1996). Control of tuberisation in potato by gibberellins and phytochrome B. Physiologia Plantarum, 98(2), 407-412.
  16. Jia D., Fan L., Liu G., Shen J., Liu C. & Yuan, Y. (2011). Effects of Genotypes and Bagging Practice on Content of b-Carotene in Apple Fruits. Journal of Agricultural Science, 3(4), p196.
  17. Kawa-Miszczak, L., Wegrzynowicz-Lesiak, E. & Saniewski, M. (2003). Retardation of tulip shoots senescence by auxin. In: Proceedings of VIII International Symposium on Postharvest Physiology of Ornamental Plants, 669, 183-190.
  18. Keller, C. P., Stahlberg, R., Barkawi, L. S. & Cohen, J. D. (2004). Long-term inhibition by auxin of leaf blade expansion in bean and ArabidopsisPlant physiology, 134(3), 1217-1226.
  19. Kurotani, K. I., Hattori, T. & Takeda, S. (2015). Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice. Plant Signaling and Behavior, 10(7), e1046667.
  20. Lichenthaler, H. K. & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 603, 591-592.
  21. Mac-Adam, J. W., Nelson C. J. & Sharp R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878.
  22. Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M.T., Janowiak, F., Filek, M., Dziurka, M., Dziurka, K., Waligórski, P., Juzoń, K. & Cyganek, K. (2013). Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. International Journal of Molecular Sciences, 14(7), 13171-13193.
  23. Mikitzel, L. J. & Knowles, N. R. (1990). Effect of potato seed-tuber age on plant establishment and amelioration of age-linked effects with auxin. Plant physiology, 93(3), 967-975.
  24. Mora-Herrera, M. E. & Lopez-Delgado, H. A. (2007). Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. American Journal of Potato Research, 84(6), 467-475.
  25. Nassar, A. M. & Adss, I. A. (2016). 2, 4-Dichlorophenoxy acetic acid, abscisic acid, and hydrogen peroxide induced resistance-related components against potato early blight (Alternaria solani, Sorauer). Annals of Agricultural Sciences. In perss.
  26. Popko, J., Hänsch, R., Mendel, R. R., Polle, A. & Teichmann, T. (2010). The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biology, 12(2), 242-258.
  27. Pospíšilová, J. (2003). Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica, 41(1), 49-56.
  28. Raghavendra, A. S., Gonugunta, V. K., Christmann, A. & Grill, E. (2010). ABA perception and signalling. Trends in plant science, 15(7), 395-401.
  29. Raymond, J., Rakariyatham, N. & Azanza J. L. (1993). Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry, 34, 927-931.
  30. Ross, J. and O’Neill, D. (2001). New interactions between classical plant hormones. Trends in Plant Science, 6, 2-4.
  31. Romanov, G. A., Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Kossmann, J. & Willmitzer, L. (2000). Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant growth regulation, 32(2-3), 245-251.
  32. Roumeliotis, E., Kloosterman, B., Oortwijn, M., Kohlen, W., Bouwmeester, H. J., Visser, R. G. & Bachem, C. W. (2012). The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 63, 4539-4547.
  33. Song, W., Ma, X., Tan, H. & Zhou, J. (2011). Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 49(7), 693-700.
  34. Su, L., Diretto, G., Purgatto, E., Danoun, S., Zouine, M., Li, Z., Roustan, J. P., Bouzayen, M., Giuliano, G. & Chervin, C. (2015). Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biology, 15(1) p. 114, (1-12).
  35. Suttle, J. C. & Hultstrand, J. F. (1994). Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiology, 105(3), 891-896.
  36. Suzuki, M., Kao, C. Y., Cocciolone, S. & McCarty, D. R. (2001). Maize VP1 complements Arabidopsisabis and confers a novel ABA/auxin interaction in roots. The Plant Journal, 28(4), 409-418.
  37. Travaglia, C., Reinoso, H. & Bottini, R. (2009). Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science, 60(12), 1131-1136.
  38. Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Taylor, M. A., MacKerron, D. K. & Ross, H. A. (2011). Potato biology & biotechnology: advances & perspectives. Elsevier.
  39. Xu, X., van Lammeren, A. A., Vermeer, E. & Vreugdenhil, D. (1998). The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitroPlant Physiology, 117(2), 575-584.