تعیین ترکیب‌پذیری عمومی و خصوصی برای عملکرد علوفه و صفات زراعی یونجه (Medicago sativa L.) در تلاقی دی‌آلل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران

2 دانشیار، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران

3 استاد، مؤسسۀ تحقیقات اصلاح و تهیۀ نهال و بذر، کرج

چکیده

از جمله مهم‌ترین هدف‌های برنامه‌های بهنژادی یونجه، بهبود عملکرد علوفه و اجزای آن است. هشت تودۀ محلی یا بوم‌جور (اکوتیپ) و رقم یونجه از مناطق مختلف آب و هوایی ایران و یک رقم خارجی برای بررسی ترکیب‌پذیری عمومی و خصوصی از نظر صفات، عملکرد علوفۀ خشک، ارتفاع، شمار ساقه، سرعت رشد دوباره و نسبت برگ به ساقه در یک طرح دی آلل 9 × 9 یک‌سویه بررسی شدند. در پاییز سال 1392، 36 دورگ F1 به همراه نه والد آن‌ها در قالب طرح بلوک‌های کامل تصادفی با سه تکرار، در مزرعۀ تحقیقاتی مؤسسۀ تحقیقات اصلاح و تهیۀ نهال و بذر کرج کشت شدند. نتایج تجزیه‌وتحلیل دی‌آلل بر پایۀ روش دو از مدل B گریفینگ برای دو سال زراعی آزمایش (1394-1392) نشان داد، تفاوت معنی‌داری از نظر اثر ترکیب‌پذیری عمومی و خصوصی برای همۀ صفات وجود دارد. همچنین اثر متقابل ترکیب‌پذیری عمومی و خصوصی با سال برای صفت عملکرد مادۀ خشک و اثر متقابل ترکیب‌پذیری عمومی با محیط برای صفت نسبت برگ به ساقه مشاهده شد. نتایج این تحقیق نشان داد، دورگ (هیبرید)‌های قهاوند × نیک‌شهری و مهاجران × ‌سیلوانه ترکیب‌پذیری خصوصی مثبت و معنی‌داری برای عملکرد مادۀ خشک علوفه و سرعت رشد دوباره دارند. درحالی‌که دورگ کوزره × یزدی افزون بر صفات عملکرد مادۀ خشک، ارتفاع و سرعت رشد دوباره، برای صفت نسبت برگ به ساقه نیز ترکیب‌پذیری خصوصی مثبت و معنی‌داری نشان داد. نتایج این بررسی نشان داد، امکان بهبود عملکرد یونجه و دیگر صفات از راه تلاقی‌ بین بوم‌جور‌های یونجه وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of general and specific combining abilities for forage yield and agronomic traits in alfalfa (Medicago sativa L.) dialell crosses

نویسندگان [English]

  • Vida Ghotbi 1
  • Hamid Dehghani 2
  • Rajab Choucan 3
  • Ahmad Moeini 2
1 Ph.D. Candidate, Department of Plant Breeding, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Plant Breeding, Tarbiat Modares University, Tehran, Iran
3 Professor, Seed and Plant Improvement Research Institute, Karaj, Iran
چکیده [English]

The most important purpose of alfalfa breeding programs is forage yield improvement. The objective of this study was to determine general combining ability (GCA) and specific combining ability (SCA) of alfalfa forage dry matter yield, plant height, number of stem, regrowth rate and leaf to stem ratio. A half diallel crosses (9×9) was performed by eight alfalfa ecotypes from different climatic regions of Iran and one cultivar from America. Experimental field was established in early autumn of 2013 which included 36 F1 hybrids with nine of their parents in a complete block design with three replications at Plant and Seed Improvement Institute, Karaj, Iran. The results of diallel analysis for two growth seasons (2014-2015) indicated high significant variation among crosses, GCA and SCA effects. Interactions of GCA and SCA with environment were significant for forage dry matter yield. The hybrids of Ghahavand × Nikshahri and Mohajeran × silvana indicated positive significant SCA for forage dry matter yield and regrowth, while, the hybrid of Kozare × Yazdi exhibited positive SCA for forage dry matter yield, plant height, re-growth rate and also leaf to stem ratio. This study indicated that the possibility of improvement forage yield and other agronomic traits through crosses among alfalfa ecotypes.

کلیدواژه‌ها [English]

  • Alfalfa
  • Agronomical traits
  • diallel
  • GCA
  • SCA
  1. Al Lawati, A. H., Pierce, C. A., Murray L. W. & Ray, I. M. (2010). Combining ability and heterosis for forage yield among elite alfalfa core collection accessions with different fall dormancy responses. Crop Science, 50, 150-158.
  2. Anonymous. (2015). Agricultural Statistics Report. Vol. 1., Field Crops. Vol. 1. Statistics and IT Bureau. Jahad e Keshavarzi Ministry Publication, Tehran, Iran. (in Farsi)
  3. Bhandari, H. S., Pierce, C. A., Murray, L. W. & Ray, I. M. (2007). Combining abilities and heterosis for forage yield among high yielding accessions of the alfalfa core collection. Crop Science, 47, 665-673.
  4. Bingham, E. T., Groose, R. W., Woodfield, D. R. & Kidwell, K. K. (1994). Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Science, 34, 823-829.
  5. Brummer, E. C. (1999). Capturing heterosis in forage crop cultivar development. Crop Science, 39, 943-954.
  6. Carelli, M., Scotti, C., Gnocchi, G., Kertikova, D., Ferrari, L. & Gaudenzi, P. (2006). Genetic diversity in breeding for narrow genetic based cultivar models in alfalfa. In Proceedings of the XXVI EUCARPIA fodder crops and amenity grasses section and XVI Medicago spp., (pp. 75–79). Group Joint Meeting Breeding and Seed Production for Conventional and Organic Agriculture, Perugia, 3-7 September 2006.
  7. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9, 463-493.
  8. Guines, F., Julier, B., Ecalle, C. & Huyghe, C. (2002). Genetic control of quality traits of lucerne (Medicago sativa L.). Australian Journal of Agricultural Research, 53, 401-407.
  9. Hill, R. R. Jr. (1983). Heterosis in population crosses of alfalfa. Crop Science, 23, 48-50.
  10. Hill, R. R., Jr., Shenk, J. S. & Barnes, R. F. (1988). Breeding for yield and quality. P. 809-825. In: Hanson, A., Barnes, A. D. and Hill, K. R. R. (ed.) Alfalfa and alfalfa Improvement. Agronomy Monograph. 29. ASA, CSSA, and SSSA, Madison, WI.
  11. Holland, J. B. & Bingham, E. T. (1994). Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Science, 34, 953-957.
  12. Julier, B., Huyghe, C. & Ecalle, C. (2000). Within and among–cultivar genetic variation in alfalfa: forage quality, morphology and yield. Crop Science, 40, 365-369.
  13. Katepa-Mutondwa, M. F., Christie, R. B. & Michaels, E. T. (2002). An improved breeding strategy for autotetraploid alfalfa (Medicago sativa L.). Euphytica, 123, 139-146.
  14. Katić, S., Mihailoviċ, V., Miliċ, D., Karagiċ Đ. & Pataki, I. (2004). Variability in dry matter yield and morphological characteristics of lucerne cultivars depending on geographic origin. Grassland science in Europe, 9, 407-409.
  15. Madril, C. M., Pierce, C. A. & Ray, I. M. (2008). Heterosis among hybrids derived from genetically improved and unimproved alfalfa germplasm. Crop science, 48(5), 1787-1792.
  16. Michaud, R., Lehman, W. F. & Rumbaugh, M. D. (1988). World distribution and historical development. In A. A. Hanson, D. K. Barnes & R. R. Hill (Ed.) Alfalfa and alfalfa improvement. (pp. 26–82) ASA, CSSA, SSSA, Madison, WI
  17. Milić, D., Katić, S., Mikić, A. & Karagić, D. (2010). Heterotic response from a diallel analysis between alfalfa cultivars of different geographic origin. In H. Cristian (Ed.) Sustainable use of genetic diversity in forage and turf breeding. (82: pp. 551–556) Springer, New York.
  18. Milić, D., Katić, S., Miklić, A., Karagić, D., Gvozdanović–Varga, J., Petrovicć, S. & Boć anski, J. (2011). Genetic control of agronomic traits in alfalfa (M. sativa ssp. sativa L.). Euphytica, 182, 25-33.
  19. Riday, H. & Brummer, E. C. (1999). Heterosis in alfalfa Medicago sativa subsp. sativa x subsp. falcata. http://www.naaic.org/ TAG/TAGpapers/riday/riday.html. Accessed 09 Oct 1999
  20. Riday, H. & Brummer, E. C. (2002). Forage yield heterosis in alfalfa. Crop Science, 42, 716-723.
  21. Riday, H. & Brummer, E. C. (2004). Morphological variation of Medicago sativa subsp. falcata genotypes and their hybrid progeny. Euphytica, 138, 1-12.
  22. Riday, H., Brummer, E. C. & Moore, K. J. (2002). Heterosis of forage quality in alfalfa. Crop Science, 42, 1088-1093.
  23. Riday, H., Brummer, E. C., Campbell, T. A., Luth, D. & Cazcarro, P.M. (2003). Comparations of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica, 131, 37-45.
  24. Rotili, P. & Zannone, L. (1974). General and specific combining ability in alfalfa at different levels of inbreeding and performance of second generation synthetics measured in competitive conditions. Euphytica, 23, 569-577.
  25. Rotili, P., Gnocchi, G., Scotti, C. & Zannone, L. (1999). Some aspects of breeding methodology in alfalfa. http://www.naaic.org/TAG/TAGpapers/rotili/rotilipapers.html
  26. Şakiroğlu, M. & Brummer, E. C. (2007). Little Heterosis between Alfalfa Populations Derived from the Midwestern and Southwestern United States. Crop Science, 47, 2364-2371.
  27. SAS Institute. (2008) SAS system for Windows: Release 9.2. SAS
  28. Scotti, C. & Brummer, E. C. (2010). Creation of heterotic groups and hybrid varieties. In C. Huyghe (Ed.) Sustainable use of genetic diversity in forage and turf breeding. (75: pp. 509–518) Springer, New York.
  29. Scotti, C., Carelli, M., Calderini, O., Panara, F. & Gaudenzi, P. (2011). Agronomic and molecular analysis of heterosis in alfalfa. Plant Genetic Resources: Charecterization and Utilization, 9, 288-290.
  30. Segovia-Leirma, A., Murray, L. W., Townsend, M. S. & Ray, I. M. (2004). Population-based diallel analyses among nine historically recognized alfalfa germplasms. Theoretical and Applied Genetics, 109, 1568-1575.
  31. Sriwatanapongse, S. & Wilsie, C. P. (1968). Intra- and intervariety crosses of Medicago sativa L. and Medicago falcata L. Crop Science, 8, 465-466.
  32. Tucak, M., Popović, S., Čupić, T., Španić, V., Šimić, B. & Meglič, V. (2012). Combining abilities and heterosis for dry matter yield in alfalfa diallel crosses. Romanian Agricultural Research, 29, 72-77.
  33. Tysdal, H. M. & Kiesselbach, T. A. (1944). Hybrid alfalfa. Journal of the American Society of Agronomy, 36, 649-667.
  34. Veronesi, F., Huyghe, C. & Delgado, I. (2006). Lucerne breeding in Europe: results and research strategies for future developments. In J. Lloveras, A. Gonzalez-Rodriguez, O. Vazquez-Yanez, J. Pineiro., O. Santamaria, L. Olea & M. J. Poblaciones (Ed.) Sustainable grassland productivity. (11:pp. 232–242.) Eds. Proceedings on the 21st General Meeting of the European Grassland Federation. Badajoz, Spain. Grassland Science in Europe, 3–6 April 2006.
  35. Woodfield, D. R. & Bingham, E. T. (1995), Improvement in two allele autotetraploid populations of alfalfa explained by accumulation of favorable alleles. Crop Science, 35, 988-994.
  36. Zhang, Y., Kang, M. S. & Lamkey, R. R. (2005). DIALLEL-SAS05: a comprehensive program for Griffing’s and Gardner- Eberhart analyses. Agronomy Journal, 97, 1097-1106.