تبارزایی مولکولی ژنگان A در برخی از گونه‌ های Triticum L. با استفاده از توالی‌ های بین رونوشت‌های ریبوزومی (ITS)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زراعت و اصلاح نباتات، دانشکدۀ کشاورزی، دانشگاه ایلام، ایلام، ایران

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشکدۀ کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

درگیاهان خانوادۀ غلات (Poaceae) جنسTriticum L.  شامل گندم نان و دیگر گونه­های مهم زراعی است که اهمیت اقتصادی بسیار بالایی در تغذیۀ انسان دارند. در این پژوهش، تبارزایی مولکولی گونه­های جنس Triticum L. دارای ژنگان (ژنوم) A (T. aestivum، T. turgidum، T. urartu و T. boeticum) بررسی شد. برای این منظور توالی­های بین رونوشت­های ریبوزومی (ITS) با استفاده از دو جفت آغازگر اختصاصی از روی DNAی ژنگانی استخراج‌شده از 26 ژنوتیپ از گونه­های بالا، افزایش و توالی­یابی شد. توالی­ها با استفاده از نرم­افزار MEGA 5.0 و با الگوریتم ClustalW هم‌ردیف شدند. ماتریس فاصله­ها محاسبه و درخت­وارۀ ژنی ترسیم شد. نتایج نشان داد، طول توالی­های ITS1 و ITS2 به ترتیب 650 جفت باز و 700 جفت باز و محتوای G+C به ترتیب 25/60 و 50/60 بود. حفاظت‌شدگی بالایی در نواحی ITS جمعیت­ها مشاهده شد (63 و 88 درصد، به ترتیب). تحلیل تبارزایی (فیلوژنتیکی) انجام‌شده با استفاده از توالی­های افزایش شده، به‌خوبی گندم­های دیپلوئید و پلی­پلوئید را در دو گروه جداگانه قرار داد. نتایج نشان داد، رابطه‌های نزدیکی بین T. aestivum و T. turgidum و همچنین بین T.urartu و T.boeticum وجود دارد. به‌طورکلی، این بررسی نشان داد، نشانگرهای مولکولی ITS برای بررسی‌های تبارزایی بسیار مناسب هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular phylogeny of the A genome using internal transcribed sequences (ITS) of ribosomal genes in some Triticum L. species

نویسندگان [English]

  • Zeinab Safari 1
  • Ali-Ashraf Mehrabi 2
1 Ph.D. Candidate, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
چکیده [English]

The genus Triticum L. includes bread wheat and other important cultivated species, which are economically important for large parts of the human food. In this study, we conducted a phylogenetic analysis of A genome-possessing species of genus Triticum L. (T. aestivum, T. turgidum, T. urartu and T. boeticum). Here, the internal transcribed sequences (ITS) of nuclear ribosomal DNA were amplified by two pairs of primers in 26 genotypes from the above species. Sequenced amplicons were aligned by ClustalW. Divergence matrices and phylogenic dendrogram were made by MEGA 5.0. Results revealed the full length of sequences of ITS1 and ITS2 were 650 bp and 700bp, respectively and G+C content were 60.25 and 60.50 in them. High levels of conservation in sequences were found among genotypes (%63 and %88). Phylogenetic analysis using amplified sequences were successfully divided diploid and polyploid wheats into individual groups. Regarding to the results, there were close relationships within T. aestivum and T. turgidum and also within T. urartu and T. boeticum. However, our analysis suggests that the ITS molecular markers seem to be proper tools for plant phylogenetic studies.

کلیدواژه‌ها [English]

  • A genome
  • dendrogram
  • molecular phylogeny
  • ribosomal DNA
  1. Baghaee-Ravari, S., Falahati-Rastegar, M., Jafarpour, B. & Shokoohifar, F. (2007). The study of probable variation in ITS- rDNA region of Fusarium solani in potato and its correlation with pathogenicity and geographical origin in Razavi and Northern Khorasan Provinces. Journal of Agricultural Sciences and Natural Resources, 14, 1-9. (in Farsi)
  2. Bandopadhyay, R., Sharma, Sh., Rustgi, S., Singh, R., Kumar, A., Singh-Balyan, H. & Kumar-Gupta, P. (2004). DNA polymorphism among 18 species of TriticumAegilops complex using wheat EST–SSRs. Plant Science, 166, 349-356
  3. Belgerami, S. (2009). The effects of ploidy and planting season on the phytic acid and some morphological characteristics of some species of grasses family. M.Sc. thesis. Faculty of Agriculture, University Shahrekord. (in Farsi)
  4. Calonje, M., Martın-Bravo, S., Dobes, C., Gong, W., Jordon-Thaden, I., Kiefer, C., Kiefer, M., Paule, J., Schmickl, R. & Koch, M. A. (2009). Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Systematics and Evolution, 282, 257-280.
  5. Carvalho, A., Guedes-Pinto, H. & Lima-Brito, J. (2009). Genetic variability assessed by ITS PCR- RFLP markers in old Portuguese bread wheat. Journal of Genetics, 88, 363-367.
  6. Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry, 19, 11-15.
  7. Dvorák, J.  & Appels, R. (1982). Chromosomal and nucleotide sequence differentiation in genomes of polyploid Triticum species. Theoretical and Applied Genetics, 63, 349-360.
  8. Ehtemam, M H., Rahiminejad, M. R., Saeidi, H. & Ebrahim, F. (2014). Phylogenetic comparison of the A genome using karyotype analysis in some Triticum species. Taxonomy and Biosystematics, 21, 11-20.
  9. Golovnina, K. A., Glushkov, S. A., Blinov, A. G., Mayorov, V. I., Adkison, L. R. & Goncharov, N. P. (2007). Molecular phylogeny of the genus Triticum L. Plant Systematics and Evolution, 264, 195-216.
  10. Goryunova, S. V., Chikida, N. N., Gori, M. & Kochieva, E. Z. (2005). Analysis of Nucleotide Sequence Polymorphism of Internal Transcribed Spacers of Ribosomal Genes in Diploid Aegilops (L.) Species. Journal of Molecular Biology, 39, 173-176.
  11. Hammer, K., Filatenko, A.A. & Korzun, V. (2000). Microsatellite markers-a new tool for distinguishing diploid wheat species. Genetic Resources and Crop Evolution, 47, 497-505.
  12. Hsiao, C., Chatterton, N. J., Asay, K. H. & Jensen, K. B. (1995). Phylogenetic relationship of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome, 38, 211-223.
  13. Kharestani, H., A.A. Nasrolah-Nejad-Qomi. A. A. & Mehrabi, A. A. (2013). Genetic diversity assessment of Einkorn wheat by using microsatellite markers. Electronic Journal of Crop Production, 6, 1-16. (in Farsi)
  14. Mammdouh-Alnaddaf, L., Moualla, M. Y. & Haider, N. (2013). Genetic Relationships among Aegilops L. and Triticum L. Species based on the Internal Transcribed Spacer Sequences of nrDNA (ITS). Asian Journal of Agricultural Sciences, 5, 108-117.
  15. Mostafavi, G. (2013).Taxonomy and molecular phylogeny of land plants. Islamic Azad University, shahre rey. First Edition, 355 pp. (in Earsi)
  16. Nalini, E., Bhagwat, S. G. & Jawali, N. (2007). Identification and characterization of some ITS variants from hexaploid wheat (Triticum aestivum L.). Plant Science, 173, 262-268.
  17. Peacock, W. J., Gerlach, W. L. & Dennis, E. S. (1981) Molecular aspects of wheat evolution: repeated DNA sequences. In: Evans LT, Peacock WJ (eds) Wheat science today and tomorrow. Cambridge University Press, Cambridge, pp. 41-60.
  18. Wang, G. Z., Matsuoka, Y. & Tsunewaki, K. (2000). Evolutionary features of chondriome divergence in Triticum (wheat) and Aegilops shown by RLFP analysis of mitochondrial DNAs. Theoretical and Applied Genetics, 100, 221-231.
  19. Zhang, W., Qu, L. J., Gu, H., Gao, W., Liu, M., Chen, J. & Chen, Z. (2002). Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theoretical and Applied Genetics, 104, 1099-1106.