مقایسۀ سطح تظاهر ژن‌های مؤثر در زیست‌ساخت آلکالوئیدهای بنزیل ایزوکوئینولین با عامل‌های رونویسی WRKY و bZIP در مراحل مختلف نموی گیاه خشخاش افیونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

در این پژوهش ارتباط میان میزان رونویسی دو عامل رونویسی فرضی (WRKY و bZIP) و ژن­های TYDC، BBE، SAT، COR، T6ODM، CODM، SODM، DBOX، NOS دخیل در زیست‌ساخت (بیوسنتز) آلکالوئیدهای بنزیل ایزوکوئینولین در گیاه خشخاش افیونی (Papaver somniferum) بررسی شد. نمونه‌برداری از گیاهان در پنج مرحلۀ نموی شامل وردمانی (رزت)، ظهور جوانۀ گل، جوانۀ پاندولی، گلدهی و تیغ‌زنی بالغ انجام شد. قسمت­های مورد بررسی شامل ریشه، قسمت پایین ساقه، برگ، بالای ساقه، کپسول و محتویات درون کپسول بودند. نتایج نشان داد، درجه‌های بالایی از هماهنگی میان میزان رونویسی عامل رونویسی WRKY و ژن­های دخیل در زیست‌ساخت آلکالوئیدهای بنزیل ایزوکوئینولین وجود داشت. بیشترین میزان هماهنگی میان میزان رونویسی عامل رونویسی WRKY و ژن TYDC مشاهده شد. با توجه به اینکه ژن TYDC از نخستین ژن­های دخیل در مسیر زیست‌ساختی آلکالوئیدهای بنزیل ایزوکوئینولین است به نظر می­رسد که این عامل رونویسی از راه تأثیر بر میزان رونویسی این ژن همۀ مسیر را تحت تأثیر خود قرار دهد. به‌طور شگفت‌انگیزی هماهنگی بالایی نیز میان میزان رونویسی عامل رونویسی bZIP و برخی از ژن­های مورد بررسی در این پژوهش مشاهده شد. ازآنجاکه تنظیم زیست‌ساخت متابولیت­های ثانویه و دفاع در برابر بیمارگر به ترتیب از نقش­های یادشده در مورد عامل‌های رونویسی WRKY و bZIP هستند و تولید آلکالوئیدهای بنزیل ایزوکوئینولین با دفاع در برابر بیمارگر و جلوگیری از آسیب‌رسانی اشعۀ UV مرتبط دانسته شده است می­توان انتظار داشت که به‌احتمال میان میزان رونویسی این عامل‌های رونویسی و ژن‌های دخیل در زیست‌ساخت آلکالوئیدهای بنزیل ایزوکوئینولین ارتباط نزدیکی وجود داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of transcription level of some involved genes in benzylisoquinoline alkaloid biosynthesis and two hypothetical transcription factors (WRKY and bZIP) in different developmental stages of Papaver somniferum

نویسندگان [English]

  • Mahdi Rezaei 1
  • Mohamad Reza Naghavi 2
  • Abdol Hadi Hoseinzadeh 3
  • Ali Reza Abbasi 3
1 Ph.D. Candidate, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

In this study the relationships between transcription rate of two hypothetical transcription factors (WRKY and bZIP) and TYDC, BBE, COR, T6ODM, CODM, SODM, DBOX and NOS which are involved in benzylisoquinoline alkaloids biosynthesis in Papaver somniferum were surveyed. Sampling was performed during five developmental stages including rosette, bud initiation, pendulous bud, flowering and lancing. Investigated parts were root, bottom part of stem, leaf, upper part of stem, capsule wall and capsule content. The results showed that there were high degree of consistency among the transcription rate of WRKY and the other genes which are involved in benzylisoquinoline alkaloids biosynthesis specially TYDC. Since TYDC is one of the initial genes in benzylisoquinoline alkaloid pathway, it seems that WRKY affect the entire pathway by changing TYDC transcription rate. Surprisingly, a coordinate regulation was seen among transcription rate of bZIP and the genes involved in benzylisoquiniline biosynthetic pathway. Since the modulation of secondary metabolism and defense against pathogens have been respectively attributed to WRKY and bZIP functions and production of benzylisoquiniline alkaloids is related to defense against plant pathogens and avoiding UV injuries, it seems that the transcription rate of these transcription factors and benzylisoquiniline biosynthetic genes are closely related. 

کلیدواژه‌ها [English]

  • Benzylisoquiniline Alkaloid
  • secondary metabolite
  • transcription rate
  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y. & Yamaguchi, A. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309, 1052-1056.
  2. Apuya, N. R., Park, J. H., Zhang, L., Ahyow, M., Davidow, P., Van Fleet, J., Rarang, J. C., Hippley, M., Johnson, T. W., Yoo, H. D., Trieu, A., Krueger, S., Wu, C., Lu, Y., Flavell, R. B. & Bobzin, S. C. (2008). Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors. Plant Biotechnology Journal, 6, 160-175.
  3. Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature, 448, 938-943.
  4. Bird, D. A., Franceschi, V. R. & Facchini, P. J. (2003). A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell, 15, 2626-2635.
  5. Chuang, C. F., Running, M. P., Williams, R. W. & Meyerowitz, E. M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Development, 13, 334-344.
  6. Ciceri, P., Locatelli, F., Genga, A., Viotti, A. & Schmidt, R. J. (1999). The activity of the maize Opaque2 transcriptional activator is regulated diurnally. Plant Physiology, 121, 1321-1328.
  7. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W. R. (2005). Genome wide identification and testing of superior reference genes for transcription normalization in Arabidopsis. Plant Physiology, 139, 5-17.
  8. Desgagné-Penix, I., Khan, M., Schriemer, D. C., Cram, D., Nowak, J. & Facchini, P. J. (2010). Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biology, 10, 252-261.
  9. Facchini, P. J., Hagel, J. M., Liscombe, D. K., Loukanina, N., MacLeod, B. P., Samanani, N. & Zulak, K. G. (2007). Opium poppy: blueprint for an alkaloid factory. Photochemistry Review, 6, 97-124.
  10. Facchini, P. J. & Park, S. U. (2003). Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry, 64, 177-186.
  11. Fukazawa, J., Sakai, T., Ishida, S., Yamaguchi, I. & Kamiya, Y. (2000). Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 12, 901-915.
  12. Hurst, H. C. (1995). Transcription factors 1: bZIP proteins. Protein Profile, 2, 101-168.
  13. Ishiguro, S. & Nakamura, K. (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Molecular Genes and Genetics, 244, 563-571.
  14. Iwata, Y. & Koizumi, N. (2005). An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proceedings of the National Academy of Sciences of the United States of AmericaJournal, 102, 5280-5285.
  15. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J. & Tiedemann, J. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7, 106-111.
  16. Kaminaka, H., Nake, C., Epple, P., Dittgen, J. & Schutze, K. (2006). bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO Journal, 25, 4400-4411.
  17. Kato, N., Dubouzet, E., Kokabu, Y., Yoshida, S., Taniguchi, Y., Dubouzet, J. G., Yazaki, K. & Sato, F. (2007). Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in C. japonica. Plant Cell Physiology, 48, 8-18.
  18. Kawano, N., Kiuchi, F., Kawahara, N. & Yoshimatsu, K. (2012). Genetic and phenotypic analyses of a P. somniferum T-DNA insertional mutant with altered alkaloid composition. Pharmaceuticals, 5, 133-154.
  19. Lara, P., Onate-Sanchez, L., Abraham, Z., Ferrandiz, C. & Diaz, I. (2003). Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. Journal of Biological Chemistry, 278, 21003-21011.
  20. Lee, E. J. & Facchini, P. J. (2010). Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell, 22, 3489-3503.
  21. Liu, J. X., Srivastava, R., Che, P. & Howell, S. H. (2007). Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant Journal, 51, 897-909.
  22. Liua, X., Baia, X., Wanga, X. & Chu, C. (2007). OsWRKY71, a rice transcription factor, is involved in rice defence response. Journal of Plant Physiology. 164, 969-979.
  23. Ma, C., Wang, H., Lu, X., Li, H., Liu, B. & Xua, G. (2007). Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time of flight mass spectrometry.  Journal of Chromatography, 1150, 50-53.
  24. Martinez, E. (2002). Multi-protein complexes in eukaryotic gene transcription. Plant Molecular Biology, 50, 925-947.
  25. Mishra, S., Triptahi, V. & Singh, S. (2013). Wound induced transcriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from P. somniferum. PLoS One, 8, 52784-52792.
  26. Nieva, C., Busk, P. K., Dominguez-Puigjaner, E., Lumbreras, V. & Testillano, P. S. (2005). Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Molecular Biology, 58, 899-914.
  27. Onoyovwe, A., Hagel, J. M., Chen, X., Khan, M. F., Schriemer, D. & Facchini, P. J. (2013) Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell, 25, 4110-4122.
  28. Patra, B., Schluttenhofer, C., Wu, Y., Pattanaik, S. & Yuan, L. (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta, 1829, 1236–1247.
  29. Pauw, B., Hilliou, F. A., Martin, V. S., Chatel, G., de Wolf, C. J., Champion, A., Pre, M., van Duijn, B., Kijne, J. W., van der Fits, L. & Memelink, J. (2004.) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. Journal of Biological Chemistry, 279, 52940-52948.
  30. Pfaffl, M. W. (2004). Quantification strategies in real-time PCR. In: Bustin SA (ed), A–Z of Quantitative PCR, La Jolla, CA: IUL (pp. 87–120) Biotechnology Series,International University Line.
  31. Rian˜o-Pacho´n, D. M., Correˆa, L. G. G., Trejos-Espinosa, R. & Mueller-Roeber, B. (2008). Green transcription factors: a chlamydomonas overview. Genetics, 179, 31-39.
  32. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K. & Yu, G. L. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science, 290, 2105-2110.
  33. Samanani, N., Alcantara, J., Bourgault, R., Zulak, K. G. & Facchini, P. J. (2006). The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant Journal, 47, 547-563.
  34. Satoh, R., Fujita, Y., Nakashima, K., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2004). A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiology, 45, 309-317.
  35. Shen, H., Cao, K. & Wang, X. (2007). A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochemistry and Biophysics Research Communication, 362, 425-430.
  36. Shiu, S. H., Shih, M. C., Li, W. H. (2005). Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiology, 139, 18-26.
  37. Silveira, A. B., Gauer, L., Tomaz, J. P., Cardoso, P. R. & Carmello-Guerreiro, S. (2007). The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Science, 172, 1148-1156.
  38. Sun, C., Palmqvist, S., Olsson, H., Boren, M., Ahlandsberg, S. & Jansson, C. (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 15, 2076-2092.
  39. Ulm, R., Baumann, A., Oravecz, A., Mate, Z. & Adam, E. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of AmericaJournal, 101, 1397-1402.
  40. Van der Fits, L. & Memelink, J. (2000). ORCA3, a jasmonate- responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289, 295-297.
  41. Vettore, A. L., Yunes, J. A., Cord, N. G., da Silva, M. J. & Arruda, P. (1998), The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins. Plant Molecular Biology, 36, 249-263.
  42. Vincentz, M., Bandeira-Kobarg, C., Gauer, L., Schlogl, P. & Leite, A. (2003). Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein. Journal of Molecular Evolution, 56, 105-116.
  43. Vom Endt, D., Kijne, J. W. & Memelink, J. (2002). Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry, 61, 107-114.
  44. Walsh, J., Waters, C. A. & Freeling, M. (1998). The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade sheath boundary. Genes Development, 12, 208-218.
  45. Weltmeier, F., Ehlert, A., Mayer, C. S., Dietrich, K. & Wang, X. (2006). Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO Journal, 25, 3133-3143.
  46. Wingender, E., Chen, X., Fricke, E., Geffers, R. & Hehl, R. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Research, 29, 281-283.
  47. Winzer, T., Gazda, V., He, Z., Kaminski, F., Kern, M. & Larson, T.R. (2012). A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 336, 1704-1708.
  48. Yamada, Y., Kokabu, Y., Chaki, K., Yoshimoto, T., Ohgaki, M., Yoshida, S., Kato, N., Koyama, T. & Sato, F. (2011). Isoquinoline alkaloid biosynthesis is regulated by a unique bHLH-type transcription factor in C. japonica. Plant Cell Physiology, 52, 1131-1141.
  49. Yang, C. Q., Fang, X., Wu, X. M. Y., Mao, B., Wang, L. J. & Chen, X. Y. (2012).  Transcriptional regulation of plant secondary metabolism. Journal of Integrated Plant Biology, 54, 703-712.
  50. Yin, Y., Zhu, Q., Dai, S., Lamb, C. & Beachy, R. N. (1997). RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO Journal, 16, 5247-5259.
  51. Zhang, Y. & Wang, L. (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 5(1), 1-12.
  52. Zulak, K.G., Cornish, A., Daskalchuk, T. E., Deyholos, M. K., Goodenowe, D. B., Gordon, P. M. K., Klassen, D., Pelcher, L. E., Sensen, C. W. & Facchini, P. J. (2007). Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta, 225, 1085-1106.
  53. Zulak, K. G., Khan, M. F., Alcantara, J., Schriemer, D. C. & Facchini, P. J. (2009). Plant defense responses in opium poppy cell cultures revealed by liquid chromatography–tandem mass spectrometry proteomics. Molecular Cell Proteomics, 8, 86-98.