ارزیابی تغییرپذیری‌های بیوشیمیایی و مولکولی شماری از ژنوتیپ‌های لوبیا (Phaseolus vulgaris L.) در شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

به‌منظور بررسی­ تأثیر بیوشیمیایی و مولکولی تحمل به تنش خشکی ژنوتیپ­های K-S-31167، GE-288 و Naz به‌دست‌آمده از غربالگری آزمون جوانه­زنی در سطوح تنش خشکی 50 و 25 درصد ظرفیت زراعی به همراه شاهد در مرحلۀ گیاهچه­ای بررسی شد. تنش خشکی پنج هفته پس از کاشت بذر اعمال و ده روز پس از اعمال تنش نمونه­گیری از سه ­برگچۀ دوم انجام شد. نتایج نشان داد که تنش خشکی باعث تغییر در نشت یونی، پرولین و کربوهیدرات‌های محلول می­شود. ژنوتیپ متحمل K-S-31167 نسبت به دو ژنوتیپ به نسبت متحمل  GE-288و حساس Naz نشت یونی کمتر داشت که نشان‌دهندۀ پایداری غشایی بالاتر این ژنوتیپ در شرایط تنش است. محتوای پرولین بیشتر در ژنوتیپ K-S 31167 نشان‌دهندۀ سامانة پاداکسندگی (آنتی‌اکسیدانی) قوی‌تر این ژنوتیپ نسبت به دو ژنوتیپ GE-288 و Naz است. نتایج به‌دست‌آمده از سنجش کربوهیدرات­های محلول و بیان ژن­های اینورتاز واکوئلی و سوکروز سنتاز نیز نشان داد که افزایش و کاهش بیان این ژن­ها در پاسخ به تنش خشکی به ترتیب باعث افزایش و کاهش فعالیت آنزیم­های اینورتاز و سوکروز سنتاز و در نهایت افزایش و کاهش غلظت مواد محلول در یاخته­ها شده و به­عنوان یک نشانة سوخت‌وسازی (متابولیک) در پاسخ به تنش عمل می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biochemical and molecular changes in three genotypes of beans (Phaseolus vulgaris L.) under drought stress

نویسندگان [English]

  • Elham Soltani 1
  • Abdol Hadi Hosseinzadeh 2
  • Alireza Abbasi 2
1 Former M. Sc. Student, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Drought stress is one of the major causes of reduction in crop production. Study physiological and biochemical processes related to drought stress can give better insight about mechanism of drought tolerance. To study the physiological and biochemical processes, three genotypes including K-S-31167, GE-288 and Naz were subjected to 3 level of drought stress based on 25, 50 and 100 percent of field capacity using CRD design with three replication using Factorial arrengment, Droght stress was applied five weeks after planting and lasted for 10 days. Second terifoliate were used for sampling. The results indicated significant changes in the electrolyte leakage (EL), prolin content (PC) and carbohydrates content (CC). Tolerant genotype (K-S-31167) had greater PC but lesser EL compare to relatively tolerant genotype (GE-288) and sensitive genotype (Naz). This indicates that tolerant genotype had higher membrane stability during stress. Results from measurement of soluble carbohydrate and expression of sucrose synthase and vacuolar invertase genes showed increase and decrease in the expression of these genes resulted in increase and decrease in the activity of the invertase and sucrose synthase enzyme which in turn influences the concentration of soluble materials which acts as metabolic signal in response to stress.

کلیدواژه‌ها [English]

  • common bean
  • Drought
  • expression gene
  • soluble carbohydrates
  • sucrose synthase
  • vacuolar invertase
  1. Ashraf, M. & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Journal of Environmental and Experimental Botany, 59, 206-216.
  2. Bajji, M., Kinet, J. M. & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Journalof Plant Growth Regulation, 36(1), 61-70.
  3. Barker, L., Kuhn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., Hellman, H., Schulze, W., Ward, J. M. & Frommer, W. B. (2000). SUT2, a putative sucrose sensor in sieve elements. Journalof Plant Cell, 12, 1153-1164.
  4. Bates, L. S., Waldren, R. P. & Teare, L. D. (1973). Rapid determination of free proline for water stress studies. Journalof Plant and Soil, 39, 205-208.
  5. Bewley, J. D. & Larsen, K. M. (1982). Differences in the responses to water stress of growing and non-growing regions of maize mesocotyls: Protein synthesis on total, free and membrane-bound polyribosome fractions. JournalofExperimentalBotany, 33(134), 406-415.
  6. Borges, A., Tsai, S. M., Gregorio, D. & Caldas, D.G. (2012). Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Journal of Plant Cell Reports, 31(5), 827-838.
  7. Cheikh, N. & Brenner, M. L. (1992). Regulation of key enzymes of sucrose biosynthesis in soybean leaves: Effect of dark and light conditions and role of gibberellins and abscisic acid. Journal of Plant Physiology, 100, 1230–1237.
  8. Comis, D. B., Tamayo, D. M. & Alonso, J. M. (2001). Determination of monosaccharids in cider by reversed-phase liquid chromatography. Journal of Analytics Chimica Acta, 436, 173-180.
  9. Crow, J. H., Hoekstra, F. A. & Crow, L. M. (1992). Anhydrobiosis. Annual Review plant physiology, 54, 579-599.
  10. Demin, I. N., Deryabin, A. N., Sinkevich, M. S. & Trunova, T. I. (2008). Insertion of Cyanobacterial desA Gene Coding for Δ12_Acyl_Lipid Desaturase Increases Potato Plant Resistance to Oxidative Stress Induced by Hypothermia. Russian Journal of PlantPhysiology, 55, 639-648.
  11. FAO Statistical Yearbook. (2013). World Food and Agriculture.
  12. Franca, M. G. C., Thi, A. T. P., Pimentel, C., Rossiello, R. O. P., Zuily-Fodil, Y. & Laffray, D. (2000). Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Journal of Environmental and Experimental Botany,43(3), 227-237.
  13. Geigenberger, P., Reimholz, R., Geiger, M., Merlo, L., Canale, V. & Stitt, M. (1997). Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Journal of Planta, 201, 502–518.
  14. Gunes, A., Inal, A., Adak, M. S., Bagci, E. G., Cicek, N. & Eraslan, F. (2008). Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russian Journal of Plant Physiology, 55(1), 59-67.
  15. Gupta, A. k. & Kaur, N. ( 2005). Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 30(5), 101-112.
  16. Kameli, A. & Losel, D. M. (1996). Growth and sugar accumulation in durum Wheat plants under water stress. Journal of New Phytologist, 132, 57-62.
  17. Krasensky, J. & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 10(1093), 1-16.
  18. Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J. W., Frommer, W. B. & Wood, J. M. (1999). The dual action of sugar carriers: Transport and sugar sensing. Journal of Plant Cell, 11, 707-726.
  19. Levitt, J. (1980). Responses of plants to environmental stress: Water, radiation, salt and other stresses, (2nd ed.). Academic Press, NewYork, PP: 3-211.
  20. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (oryza sativa L.) cultivars differing in salinity resistance. Journal AnnalsofBotany, 78, 389-398.
  21. Molinari, H. B. C., Marur, C. J., Bespalhok, J. C., Kobayashi, A. K., Pileggi, M., Pereira, F. P. P. & Vieira, L. G. E. (2004). Osmotic adjustment in transgenic Citrus rootstocks (Carrizo citrange) overproducing proline. Journal of Plant Science, 167, 1375-1381.
  22. Movahedie Dehnavi, M., Modarese Sanavi, S. A. M., Sorushzadeh, A. & Jalali, M. (2004). Changes of proline, total soluble sugar, chlorophyll (spad) and chlorophyll fluorescence in varieties of autumn Carthamus in effect of drought stress and spray of Zn and Mn. DesertJournal, 9, 93-110. (in Persian with English Summary).
  23. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. Febs Letters, 461(3), 205-210.
  24. Naya, L., Ladrera, R., Ramos, J., Gonzalez, E. M., Arrese-Igor, C., Minchin, F. R. & Becana, M. (2007). The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Journal of Plant Physiology, 144, 1104-1114.
  25. Price, J., Laxmi, A., Martin, S. K. & Jang, J. C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in arabidopsis. Journal of plant Cell,16, 2128-2150.
  26. Roitsch, T. (1999). Source-sink regulation by sugar and stress. Journal of Current Opinion in Plant Biology, 2, 198-206.
  27. Shin, K. S., Chakrabarty, D. & Paek, K. Y. (2002). Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Scientia Horticulturae, 96(1), 195-204.
  28. Singh, S. P. (2007). Drought resistant in race Durango dry bean landraces and cultivars. Journal of agronomy, 99, 1219-1225.
  29. Sukumaran, N. P. & Weiser, C. J. (1972). An excised leaflet test for evalu- ating potato frost tolerance. Hortscience, 7, 467-468.
  30. Valliyodan, B. & Nguyen, H. T. (2006). Undertanding regulatory networks and engineering for enhanced drought tolerance in plants. Journal of Current Opinion in Plant Biology, 9, 189-195.