باززایی درون شیشه‌ای اسپرس (Onobrychis sativa) با استفاده از ریزنمونۀ نوک ساقه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد اصلاح نباتات، دانشگاه محقق اردبیلی

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل

3 استادیار، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل

چکیده

نیاز روزافزون به فرآورده‌های دامی، به‌کارگیری روش‌های زیست‌فناوری (بیوتکنولوژی) در بهبود گیاهان علوفه­ای مانند اسپرس را با اهمیت کرده است. در این تحقیق، تأثیر سطوح مختلف تنظیم‌کننده­های رشدی اکسین­ (NAA و IBA) و سیتوکینین (BAP، زآتین و TDZ) بر پاسخ رشدی درون شیشه­ای ریزنمونه‌های نوک ساقۀ رقم­های خوانسار و شهرکرد اسپرس بررسی شد. برای این منظور، ریزنمونه‌های نوک ساقه از بذرهای ضدعفونی شده و جوانه‌زدۀ 4-7 روزه تهیه و روی محیط کشت MS جامد حاوی سطوح مختلف اکسین و سیتوکینین کشت شدند. نتایج نشان داد که درصد ساقه‌های چندگانه، شمار ساقه در هر ریزنمونه و طول ساقه رشد کرده به‌طور معنی‌داری تحت تأثیر رقم، ترکیب تنظیم­کننده­های رشدی و اثر متقابل بین آن­ها قرار گرفت. درصد ساقه­های چندگانه و میانگین شمار ساقه در هر ریزنمونه به ترتیب از 0 تا 17/89 درصد و 1 تا 03/5 متغیر بود. به‌طورکلی، درصد پینه (کالوس)‌زایی، درصد ساقه‌های چندگانه و شمار ساقه در هر ریزنمونه در رقم خوانسار به‌طور معنی­داری بیشتر از رقم شهرکرد بود. بیشترین درصد شاخه­زایی (15/98 درصد)، ساقه‌های چندگانه (17/89 درصد) و شمار ساقه در هر ریزنمونه (3/4) در رقم خوانسار و محیط کشت MS حاوی 1/0 میلی­گرم در لیتر IBA به همراه 3 میلی­گرم در لیتر BAP به دست آمد. ریشه‌زایی ساقه‌ها و رشد مناسب ریشه‌ها در محیط کشت MS بدون تنظیم­کننده‌های رشدی مشاهده شد. این نتایج نه تنها از جنبۀ ریزازدیادی و کشت درون شیشه­ای، بلکه به‌عنوان پیش‌زمینۀ مناسب برای هدف‌های اصلاحی و انتقال ژن به این گیاه اهمیت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

In vitro regeneration of sainfoin (Onobrychis sativa) via shoot apex explant

نویسندگان [English]

  • Leyli Honarmand 1
  • Nasser Zare 2
  • Rasoul Asghari Zakaria 2
  • Parisa Shekhzade-Mosadegh 3
1 Former M.Sc. Student, Agricultural Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
2 Associate Professor, Agricultural Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
3 Assistant Professor, Agricultural Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The growing demand for animal products has made importance of the utilization of biotechnological techniques in improvement of forage crops such as sainfoin. In this research, the effects of different levels of auxin (NAA and IBA) and cytokinin (BAP, Zeatin and TDZ) on in vitro growth response of shoot apex explants of Shahrkord and Khansar cultivars of sainfoin were investigated. For this, shoot apex explants were prepared from 4-7 days old seedling grown and cultured on solidified MS medium containing different levels of auxin and cytokinin. The results indicated that the percentage of multiple shoots, number of shoots per explants and shoot length were significantly influenced by cultivar, plant growth regulators combination and its interaction. The percentage of multiple shoots and number of shoots per explants were varied from 0 to 89.7% and 1 to 5.03, respectively. Generally, the percentage of callus induction, multiple shoots and number of shoots per explant in the Khansar cultivar was significantly higher than those of Shahrkord cultivar. The highest percentage of shoots (98.15%), multiple shoots (89.17%) and number of shoots per explant (4.3) were obtained in the Khansar cultivar with MS medium containing 0.1 mgL-1 IBA and 3 mgL-1 BAP. Root induction and appropriate growth of roots were observed on MS medium without plant growth regulators. These results are highly valuable for in vitro culture and micropropagation of sainfoin as well as in breeding programs and transformation of this plant.

کلیدواژه‌ها [English]

  • In vitro propagation
  • Onobrychis sativa
  • Tissue culture
Bhaskaran, S. & Smith, R.H. (1990). Regeneration in cereal tissue culture: A review. Crop Science, 30, 1329-1336.
Bhojwahi, S.S. & Razdan, M.K. (1996). Plant tissue culture: theory and practice. Amsterdam, Elsevier.
Celiktas, N., Can, E., Hatipoglu, R. & Avci, S. (2006). Somatic embryogenesis, callus production, and plantlet growth in sainfoin (Onobrychis viciifolia Scop.). New Zealand Journal of Agricultural Research, 49, 383-388.
Cetin, C. (2008). Production of insect-resistant transgenic sainfoin (Onobrychis sativa Lam.) plants. Ph.D. Thesis. Ankara University, Turkey.
Cousins, Y.L., Lyon, B.R. & Lewelly, D.J. (1991). Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Australian Journal of Plant Physiology, 18, 481-494.
Delgado, I., Salvia, J., Buil, I. & Andres, C. (2008). The agronomic variability of a collection of sainfoin accessions. Spanish Journal Agricultural Research, 3, 401-407.
Diettrich, B., Mertinat, H. & Luckner. M. (1990). Formation of Digitalis lanata clone lines by shoot tip culture. Planta Medica, 56, 53-58.
Ehsanpour, A. & Amini, F. (2002). Plant Tissue and Cell Culture. Jahad Daneshgahi Isfehan Press, Isfehan, 11pp.
Etedali, F. & Baghban kohne rouz, B. (2007). Callus Induction and Plant Regeneration from an ancient and forgotten crop plant Vicia ervilia L. (WILLD). The 5th National Biotechnology Congress of Iran, 24-26 Nov., Summit Meeting Conference Hall, Tehran, Iran.
Farshadfar, M. & Bakhshi-Khaniki, G. R. (2011). Basicsof biotechnology andplanttissue culture. Tehran: Payame Noor University Publications, College of Agricultural Sciences, 231pp. (in Farsi)
Fatima, Z., Mojib, A., Fatima, S., Arshi, A. & Umar, S. (2009). Callus induction, biomass growth and regeneration in Digitalis lanata Ehrh: influence of plant growth regulators and carbohydrates. Journal of Biotechnology, 33, 1-13.
Firoozabady, E. & DeBoer, D. L. (1993). Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In vitro Cellular and Developmental Biology, 29, 166-173.
Fontana, G., Santini, L., Caretto, S., Furgis, G. & Mariotti, D. (1993). Genetic transformation in the grain legume chickpea (Cicer arietinum L.). Plant Cell Reports, 12, 194-198.
Hakkaart, F.A. & Versluijs, J.M.A. (1983). Some factors affecting glassiness in carnation meristem tip cultures. Netherlands Journal of Plant Pathology, 89, 47-53.
Han, Y., Jin, X., Wu, F. & Zhang, G. (2011). Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). Journal of Zhejiang University SCIENCE B, 12, 399-407.
Hansen, G. & Wright, M. (1999). Recent advances in the transformation of plants. Trends in Plant Science, 4, 226-231.
Ignacimuthu, S. & Franklin, G. (1999). Regeneration of plantlets from cotyledon and embryonal axis explants of Vigna mungo L. Hepper. Plant Cell, Tissue and Organ Culture, 55, 75-78.
Jauhar, P. P. (2006). Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Science, 46, 1841-1859.
Kumar, S., Tiwari, R., Chandra, A., Sharma, A. & Bhatnagar, R.K. (2013). In vitro direct plant regeneration and Agrobacterium-mediated transformation of lucerne (Medicago sativa L.). Grass and Forage Science, 68, 459-468.
Lakshmanan, P. & Taji, A. (2000) Somatic embryogenesis in leguminous plants. Plant Biology, 2, 136-148.
Li, J.J., Wu, Y.M., Wang, T. & Liu, J.X. (2009). In vitro direct organogenesis and regeneration of Medicago sativa L. Biologia Plantarum, 53, 325-328.
Gaspar, T. H., Kevers, C., Debergh, P., Maene, L., Paques, M. & Boxus, P. (1987). Vitrification: Morphological, Physiological, and Ecological Aspects. Cell and Tissue Culture in Forestry, 24-26, 152-166.
Goleyjani Moghaddaam, R., Motallebi, M., Zamani, M. R. & Rezanejad, H. (2012). Optimization of regeneration and transformation of canola Hyola 308 and RGS003 lines. Journal of Plant Biology, 11, 47-61.
Gulati, A. & Jaiwal, P.K. (1994). Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Reports, 13, 523-527.
Madani, G., Ghobadi, S., Seyed-Tabatabaei, B.E., Talebi, M. & Yamchi, V. (2013). Effect of plant growth regulators and explant types on regeneration and micropropagation of a commercial strawberry cultivar (Fragaria×ananassa cv. Selva). Journal of Science and Technology of Greenhouse Culture, 15, 111-122. (in Farsi)
Mahdavian, M., Bouzari, N. & Abdollahi, H. (2010). Effects of culture media and growth regulators on proliferation and rooting of a vegetative mahlab rootstock (SL-64). Seed and Plant Improvement Journal, 26, 15-26. (in Farsi)
Machakova, I., Zazimalova, E. & George, E. F. (2008). Plant Growth Regulators I: Introduction; Auxins, their Analogues and Inhibitors. In: E. F. George, M. A. Hall & G. J. De Klerk (Ed), Plant Propagation by Tissue Culture. Part I: The Technology. 3rdedn. (pp. 175-205). Springer, Verlag, Berlin, Germany.
Malekiband, S., Jafari, M., Ghadimzadeh, M. & Bernosi, E. (2013). Plant Regeneration via direct organogenesis in three alfalfa (Medicago sativa L.) cultivars using stem nodal explant. Seed and Plant Improvement Institute, 1, 65-80.
Mansseri-Lamrioui, A., Louerguioui, A., Bonaly, J., Yakoub-Bougdal, S. & Gana-Kebbouche, S. (2011). Proliferation and rooting of wild cherry: The influence of cytokinin and auxin types and their concentration. African Journal of Biotechnology, 10, 8613-8624.
Marks, T. R. & Simpson, S. E. (1994). Factors affecting shoot development in apically dominant Acer cultivars. Journal of Horticultural Science & Biotechnology, 69, 543-552.
Metry, E.A., Ismail, R.M., Hussien, G.M., Nasr El-Din, T.M. & El-Itriby, H.A. (2006). Regeneration and microprojectile -mediated transformation in Vicia faba L. Arab Journal of Biotechnology, 1, 23-36.
Miller, D. A. (1984). Other legumes. In: Forage crops. University of Illinois, McGraw-Hill, Inc. pp, 351-367.
Molina, S. M. (2004). In vitro callus induction and plants from stem and petiole explants of Salvia canariensis L. Plant Tissue Culture, 14, 167-172.
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
Nasir, A., Yusuf Zafar, S. & Malik, A. (1997). A simple procedure of Gossypium meristem tip culture. Plant Cell Tissue & Organ Culture, 51, 201-207.
Ozcan, S., Sevimay, C. S., Yildiz, M., Sancak, C. & Ozgen, M., (1996). Prolific shoot regeneration from immature embryo explants of sainfoin (Onobrychis viciifolia Scop). Plant Cell Reports, 16, 200-203.
Ozgen, M., Ozcan, S., Sevimay, C. S., Sancak, C. & Yildiz, M. (1998). High frequency adventitious shoot regeneration in sainfoin. Plant Cell, Tissue and Organ Culture, 52, 205-208.
Palazon, J., Bonfill, M. Cusido, R. M., Pinol, M. T. & Morales. C. (1995). Effect of auxin and Phenobarbital on morphogenesis and production of digitoxin in Digitalis callus. Plant and Cell Physiology, 36, 247-252.
Peres, L.E.P., Majerowicz, N., Gilberto, E. & Kerbauy, B. (2001). Dry Matter Partitioning Differences between Shoots and Roots in Two Contrasting Genotypes of Orchids and their Relationship with Endogenous Levels od Auxines, Cytokinins and Abscisic Acid. Departamento de Botanica, universidade de São Paulo usp caixa postal 11461. 05422-970. São Paulo. Sp. Brazil.
Polanco, M. C., Pelaez, M. I. & Ruiz, M. L., (1988). Factors affecting callus and shoot formation in in vitro cultures of Lens culinaris Medik. Plant Cell, Tissue and Organ Culture, 15, 175-182.
Polisetty, R., Paul, V., Deveshwar, J. J., Khetarpal, S., Suresh, K. & Chandra, R. (1997). Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Reports, 16, 565-571.
Rajasekaran, K., Grula, J. W., Hudspeth, R. L., Pofelis, S. & Anderson, D. M. (1996). Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxy acid synthase. Molecular Breeding, 2, 307-319.
Rojas-Martínez, L., Visser, R.G.F. & Klerk, G.J. (2010). The hyperhydricity syndrome: Waterlogging of plant tissues as a major cause. Propagation of Ornamental Plants, 10, 169-175.
Rubiales, D., Fondevilla, S., Chen, W., Gentzbittel, L., Higgins, T.J.V., Castillejo, M.A., Singh, K.B. & Rispail, N. (2015). Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Sciences, 34, 195-236.
Saini, R. & Jaiwal, K.P. (2005). Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Reports, 24, 164-171.
Saglam, S. (2010). Growth regulators effects on in vitro shoot regenerayion of sainfoin (Onobrychis sativa Lam.). Biotechnology and Biotechnological Equipment, 24, 2077-2079.
Sales, E., Nebaer, S.G., Arrillaga I. & Segura. J. (2002). Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide- producing plant Digitalis minor. Journal of Plant Physiology, 159, 9-16.
Sancak, C. (1999). In vitro micropropagation of sainfoin (Onobrychis viciifolia Scop.). Turkish Journal of Botany, 23, 133-136.
Shahzad, A. & Siddiqui, S.A. (2000). In vitro organogenesis in Ocimum sanctum L. -A multipurpose heb. Phytomorphology, Delhi. 50, 27-35.
Shigaki, T., Gray, F.A., Delaney, R.H. & Koch, D.W. (1998). Evaluation of host resistance for management of the northern root-Knot nematode in sainfoin, Onobrychis viciifolia. Journal of Sustainable Agriculture, 12, 23-39.
Skala, A. & Wysokinska, A. (2006). In viro regeneration of Salvia nemorosa L. from shoot tips and leaf explants. In vitro Cellular and Developmental Biology-Plant, 40, 596-602.
Srivastava, L. M. (2002). Plant Growth and Development-Hormones and Environment. Amsterdam, Sydney, Academic Press, 772pp.
Soares, M.I.M., Kakhimov, S. & Shakirov, Z. (2000). Productivity of the Desert Legume” Onobrychis”. Dryland Biotechnology. Vol.6.
Sobhanian, N., Habashy, A.A., Farshad Far, E. & Tohid Far, M. (2012). Optimizing regeneration and reporter gene (gus) transformation of alfalfa (Medicago sativa). Annals of Biological Research, 3, 2419-2427.
Sorin, C., Bussell, J., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., McKhann, H., Garcion, C., Vaucheret, H., Sandberg, G. & Bellini, C. (2005). Auxine and light control of adventitious rooting in Arabidopsis require Argonaut 1. The Plant Cell, 17, 1343-1359.
Srivatanakul, M., Park, S. H., Sanders, J.R., Salas, M.G. & Smith, M.G. (2000). Multiple shoot regeneration of kenaf (Hibiscus cannabinus L.) from a shoot apex culture system. Plant Cell Reports, 19, 1165-1170.
Sticklen, M. & Oraby, H.F. (2005). Shoot apical meristem: A sustainable explants for genetic transformation of cereal crops. In vitro Cellular and Developmental Biology-Plant, 41, 187-200.
Tatari Varnousfaderani, M., Mousavi, S.A. & Bouzari, N. (2012). Micropropagation of some clonal rootstocks of stone fruits. Seed and Plant Improvement Journal, 28, 53-66 (in Farsi).
Tohidfar, M., Zare, N., Salhi, G. & Eftghari, M., (2013). Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Culture, 113, 227-235.
Trolinder, N.L. & Goodin, J.R. (1987). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 14, 758-76.
Ugandhar, T., Venkateshwarlu, M., Sammailah, D. & Jagan Mohan Reddy, K. (2012). Rapid in vitro Micro Propagation of Chick pea (Cicer arietinum L.) From Shoot tip and Cotyledonary node explants.  Journal of Biotechnology & Biomaterials, 2, 1-6.
Ullah, H., Chen, J., Temple, B., Boyes, D., Alonso, J., Davis, K., Ecker, J. & Jones A. (2003). The B-subunit of the Arabidopsis G. protein negatively regulates auxin-induced cell division and affects multiple development processes. The Plant Cell, 15, 393-409.
Umbeck, P., Swain, W. & Yang, N.S. (1989). Inheritance and expression of genes for kanamycin and chloramphenicol resistance in transgenic cotton plants. Crop Science, 29, 196-201.
Van Staden, J., Zazimalova, E. & George, E.F. (2008). Plant Growth Regulators II: Cytokinins, their Analogues and Antagonists. 205-226. In: George, E.F., Hall, M.A., De Klerk, G.J. Plant propagation by tissue culture. Vol. 1: The Background. Netherlands: Ed.
Voisey, C.R., White, D.W., Dudas, B., Appleby, R.D., Ealing, P.M. & Scott, A.G. (1994). Agrobacterium-mediated transformation of white clover using direct shoot organogenesis. Plant Cell Reports,13, 309-314.
Wernicke, W., Grost, J. & Molkovits, L. (1986). The ambiguous role of 2-4-dichlorophenoxyacetic acid in wheat tissue culture. Physiologia Plantarum, 68, 597-602.
Zapata, C., Park, S. H., El-Zik, K. M. & Smith, H. (1999). Transformation of Texas cotton cultivar by using Agrobacterium and the shoot apex. Theoretical and Applied Genetics, 98, 252-256.
Zare, N., Valizadeh, M., Tohidfar, M., Mohammadi, S.A., Malboobi, M.A. & Habashi, A.A. (2009). Selection of regenerative genotypes from Iranian alfalfa cultivars. Journal of Food, Agriculture & Environment, 7, 567-572.
Zarei, M., Nezami, E., Hosseini, E., Ahmadi, J. & Garousi, G. (2013). The effect of medium, carbon source, light spectrum and style treatment of auxin on shoot and root regeneration of Gisela 6 root stock. Cell & Tissue Journal, 2, 169-185. (in Farsi)
Zhang, He., Huang, Q. & Su, J. (2010). Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agricultural Sciences in China, 9, 170-178.
Ziv, M. (1991). Vitrification: morphological and physiological disorders of in vitro plants. In: Micropropagation Technology and Applications. In: P.C. Debergh & R.H. Zimmerman. Kluwer Academic Publisher, Dordrecht, (pp. 45-69).
Yazdi Samadi, B., Rezai, A. & Valizadeh, M. (2001). Statistical Design inAgriculturalResearch. Publishing and Printing Institute of Tehran University, Tehran, 397pp.