بررسی تغییرپذیری پلی‌آمین‌ها تحت تنش خشکی در لوبیای قرمز (Phaseolus vulgaris L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیوتکنولوژی کشاورزی، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 دانشیار گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

در این تحقیق تغییرپذیری پلی‌آمین‌های پوترسین (put)، اسپرمیدین (spd)، اسپرمین (spm) و نشت الکترولیت (EL) در سه ژنوتیپ K-S-31167، GE-288 و NAZ لوبیا تحت تنش خشکی بررسی شد. تنش خشکی در مرحلۀ گلدهی بر پایۀ ظرفیت زراعی و در گلخانه انجام شد. در هر سه ژنوتیپ با افزایش شدت تنش، محتوای پوترسین و اسپرمین افزایش یافت. بیشترین افزایش پوترسین در ژنوتیپ حساس به خشکی NAZ و بیشترین افزایش اسپرمین در ژنوتیپ مقاوم به خشکی K-S-31167 مشاهده شد. دو ژنوتیپ K-S-31167 و NAZ افزایش پیوسته در محتوای اسپرمیدین را نشان دادند اما در ژنوتیپ GE-288 کاهش و پس‌ازآن افزایش در محتوای اسپرمیدین مشاهده شد. ژنوتیپ حساس (NAZ) گرایش به تجمع پوترسین و ژنوتیپ مقاوم (K-S-31167) گرایش به تجمع اسپرمین نسبت به دیگر پلی‌آمین‌ها دارند. تنش باعث افزایش در نشت الکترولیت در هر سه ژنوتیپ شد. نتایج نشان داد که ژنوتیپ مقاوم به خشکی K-S-31167 نشت الکترولیت کمتری نسبت به ژنوتیپ حساس NAZ داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Polyamine changes analysis under drought stress in common bean (Phaseolus vulgaris L.)

نویسندگان [English]

  • Mohsen Mombeni 1
  • Alireza Abbasi 2
چکیده [English]

In this research, we studied polyamines including putrescine (put), spermidine (spd) and spermine (spm) changes in three common bean (Phaseolus vulgaris) genotypes, K-S-31167, GE-288 and NAZ under drought stress. Our result showed steadily increase in putrescine (put) and spermine (spm) in all three genotypes.  GE-288 genotype showed decrease and then increasing in spermidine (spd) content but K-S-31167 and NAZ genotypes showed steadily increasing in spermidine (spd). NAZ genotype accumulated putrescine more than other polyamines and showed the highest amount of putrescine in compare with other genotypes. K-S-31167 genotype accumulated the highest spermine content in compared with other genotypes. Our result showed significant increase in electrolyte leakage (EL) in all three genotypes. K-S-31167 as drought tolerant genotype and ZAZ as drought sensitive genotypes showed the lowest and the highest increase in EL, respectively.

کلیدواژه‌ها [English]

  • common bean
  • Drought stress
  • electrolyte leakage
  • polyamine
  1. Abbasi, A. R., Sarvestani, R., Mohammadi, B. & Baghery, A. (2014).Drought stress-induced changes at physiological and biochemical levels in some common vetch (Vicia sativa L.) genotypes. Journal of. Agricultural. Science and Technology, 16, 505-516.
  2. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P. & Tiburcio, A.F. (2010). Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231, 1237-1249.
  3. Bhatnagar-Mathur, P., Vadez, V. & Sharma, K.K. (2008). Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep, 27, 411-424.
  4. Bouchereau, A., Aziz, A., Larher, F. & Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant Science, 140,103-125.
  5. Chai, T., Fadzillah, M., Kusnan, M. & Mahmood, M. (2005). Water stress induced oxidative damage and antioxidant responses in micropropagated banana plantles. Biologial Plantarum, 49(1), 153-156.
  6. Dhindsa, R.S. (1991). Drought stress-enzyme of gluthation metabolism and protein synthesis in Tortula varalis. Plant physiology, 95, 648-651.
  7. Flores, T., Todd, C.D., Tovar-Mendez, A., Dhanoa, P.K., Correa-Aragunde, N., Hoyos, M.E., Brownfield, D.M., Mullen, R.T., Lamattina, L. & Polacco, J.C. (2008). Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiology, 147, 1936-1946.
  8. Gill, S.S. & Tteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling Behavior, 5(1), 26-33.
  9. Groppa, M. D. & Benavides, M.P. (2008). Polyamines and abiotic stress: recent advances. Amino Acids, 34, 35-45.
  10. Hugo, J.P. & Jan, M.C. (1987). High speed HPLC analysis of polyamines in plant tissues. Plant Physiology, 83, 232-234.
  11. Keshavarzinia, R., Mohammadi Narjesi, B. & Abbasi, A. R. (2013). Evaluation of genetic diversity in common bean based on morphological traits under normal and drought conditions. Iranian Journal of Agricultural Science, 44 (2), 305-315. (in Farsi)
  12. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced Senescene in leaves of Rice (Oryza sativa L.) Cultivars differing in salinity resistance. Annual Botany, 78, 389-398.
  13. Malabica, R. & Wu, R. (2001). Arginine decarboxylate transgene expression and analysis of environmental stress tolerance in transgenic race. Plant Science, 160, 869-875.
  14. Moller, I.M., Jensen, P.E. & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459-481.
  15. Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A.K., Mickelbart, M.V., Ferruzzi, M.G., Mengiste, T. & Handa, A.K. (2012). Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiology, 1033-1045.
  16. Porter, J.R. (2005). Rising temperatures are likely to reduce crop yields. Nature, 436, 173-174.
  17. Premachandra, G.S. & shimada, T. (1998). Evaluation of polyethylene glycol test of measuring cell membrane stability as a drought tolerance test in wheat. Agricultural. Science, 110, 429-43.
  18. Raison, J.K., Berry, G.A., Armod, R.A. &. Pike, C.S. (1980). Membrane properties in relation to the adaptation of plants to temperature stress. Crop Science, 34, 261-273.
  19. Rathinasabapath, B. (2000). Metabolic engineering of stress tolerance: Installing osmoprotectant synthesis pathway. Annals of Botany, 86, 709-716.
  20. Sairam, P.K., Deshmukh, P.S. & Shukla, D.S. (1997). Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Agronomy and Crop Science, 178, 171-178.
  21. Shpiler, L. & Blum, A. (1986). Differential reaction of wheat cultivars to hot environment. Euphytica, 35, 483-492.
  22. Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T. & Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 102, 8245-8250.
  23. Valentovic, P., Luxava, M., Kalorovic, L. & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two cultivars. Plant and Soil Environment, 52(4), 186-191.
  24. Yamaguchi, K., Takahash, I.Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, Michael, A. & Kusano, T. (2006). The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS. Lett, 580, 6783-6788.
  25. Yamaguchi, K., Takahash, I.Y., Berberich, T., Imai, A., Takahashi, T., Michael, A.J. & Kusano, T. (2007). A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research, 352, 486-490.
  26. Yang, J., Zhang, J., Liu, K., Wang, Z. & Liu, L. (2007). Involvement of polyamines in drought resistance of rice. Journal of Experimental Botany, 58 (6), 1545-1555.
  27. Yardanov, I., Velikonova, V. & Tsonev, T. (2003). Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology, 187-206.
  28. Zlatev, Z.S., Lidon, F.C., Ramulho, J.C. & Yordanov, I.T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum, 50(3), 389-394.