بررسی پایداری عملکرد دانۀ لاین‌ها و ارقام برنج با استفاده از روش امی (تأثیرات اصلی افزایشی و تأثیرات متقابل ضرب‌پذیر)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد کرج، البرز، ایران

2 پژوهشگر معاونت مؤسسۀ تحقیقات برنج کشور، آمل

3 دانش آموخته کارشناسی ارشد، دانشگاه آزاد اسلامی ، واحد بیرجند، بیرجند، ایران

چکیده

موفقیت در گزینش ارقام و لاین‌های دارای عملکرد مطلوب به‌شدت تحت تأثیر اثر متقابل ژنوتیپ و محیط قرار می‌گیرد. در این تحقیق به‌منظور بررسی اثر متقابل ژنوتیپ و محیط در برنج، دوازده لاین برنج همراه با دو رقم شاهد به نام‌ فجر و ندا در نه محیط (سه منطقه و سه سال) از نظر عملکرد ارزیابی شدند. طرح استفاده‌شده، بلوک‌های کامل تصادفی با سه تکرار بود. در تجزیۀ واریانس اثر ژنوتیپ، محیط و اثر متقابل آنها معنی‌دار بود. داده‌ها با استفاده از روش AMMI تجزیه‌وتحلیل شدند. در این روش دو مؤلفۀ اول اثر متقابل معنی‌دار و 66 درصد از واریانس اثر متقابل را توجیه کردند. نتایج نشان داد که عملکرد برنج تا حد زیادی تحت تأثیر فاکتورهای محیطی قرار می‌گیرد. ژنوتیپ 9 دارای عملکردی بیشتر از میانگین و از نظر اولین مؤلفۀ اثر متقابل کمترین مقدار را داشت که به‌عنوان لاین پایدار مشخص شد. نمودار دوبعدی مربوط به دو مؤلفۀ اول اثر متقابل نشان داد که لاین 9 در محیط‌های ساری سال 87 و آمل سال 87 دارای سازگاری خصوصی ‌بود. دو لاین 11 و 12 و رقم ندا در آمل و در سال 88 دارای بیشترین سازگاری خصوصی بودند. لاین‌های 4 و 8 در تنکابن سال 87 و 88 و آمل در سال 89 دارای سازگاری خصوصی بودند. لاین‌های 6، 7 و 10 و رقم فجر در سال 88 و 89 در ساری دارای سازگاری خصوصی بودند. لاین‌های 1، 2، 3 و 5 در تنکابن سال 89 دارای سازگاری خصوصی بودند. لاین‌های 2، 5، 7 و 12 و ارقام فجر و ندا نیز نسبت به سایر لاین‌ها از سازگاری عمومی بیشتری برخوردار بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Stability Analysis of Grain Yield in Lineas and Cultivars of Rice (Oriza sativa L.) Using AMMI (Additive Main effects and Multiplicative Interaction) Method

نویسندگان [English]

  • Khodadad Mostafavi 1
  • Seyed Sadegh Hosseini Imeni 2
  • Morteza Firoozi 3
1 Department of Agronomy and Plant Breeding, College of Agriculture, Karaj branch, Islamic Azad University, Alborz, Iran.
2 Researcher of rice research inistitute of Iran, Amol
3 Department of Agronomy and Plant Breeding, Birjand Branch, Islamic Azad University, Birjand, Iran
چکیده [English]

Selection of favorite cultivars and lines affected with genotype- environment interaction dramatically. In order to study of genotype × environment interaction in rice, 12 lines with 2 commercial cultivars as check (Neda and Fajr) was studied in 9 different environments (3 location and 3 years). The experiment was randomized complete block design (RCBD) with three replications. The differences were significant among genotypes, environments and their interaction. The yield stability was studied by AMMI method. The results showed two principal components were significant and explain 67 percent of interaction variance. Results revealed that grain yield was highly influenced by environmental factors. The line 9 had yield higher than mean and with the lowest for first interaction principal component thus distinctive as stable line. Biplot of two first interaction component revealed that line 9 in Sari (2008) and Amol (2008) had specific adaptability. Lines 4 and 8 in Tonkabon (2008 and 2009) and in Amol (2010) had specific adaptability. Lines 6, 7, 10 and Neda cultivar in Sari (2009, 2010) had specific adaptability. Finlay the lines 1, 2, 3 and 5 in Tonkabon (2010) had specific adaptability. Lines 2, 5, 7 and 12 and fajr and Neda cultivars had the highest common adaptability to environments.

کلیدواژه‌ها [English]

  • AMMI
  • Genotype- environment interaction
  • rice
  • Kernel yield
  1. Abamuf, J. & Allurik, A. (1998). AMMI analysis of rain fed lowland rice (Oriza sativa) traits in Nigeria. Plant Breed. 117: 395-397.
  2. Anandan, A. & Eswaran, R. (2009). Genotype by environment interactions of rice (Oryza sativa L.) hybrids in the east coast saline region of Tamil Nadu. In the Proceedings of 2nd International Rice Congress, pp: 226.
  3. Asenjo, C. A., Bezus R. & Acciaresi, H. J. (2003). Genotype- environment interactions in rice (Oryza sativa L.) in temperate region using the joint regression analysis and AMMI methods. Cereal Res. Communi, 31 (1-2): 97-104.
  4. Crossa, J., Gauch, H.G. & Zobel, R.W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science, 30: 493-500.
  5. Crossa, J., Fox, P. N., Pfeiffer, W. H., Rajaram, S. & Gauch, H. G. (1991). AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet:  81: 27-37.
  6. Crossa, J., Cornelius, P. L. & Yan, W. (2001). Biplots of linear-bilinear models for studying crossover genotype ´ environment interaction. Crop Science: 41:158-163.
  7. Das, S., Misra, R. C., Patnaik, M. C. & Das, S. R. (2010). G×E INTERACTION, ADAPTABILITY AND YIELD STABILITY OF MID-EARLY RICE GENOTYPES. Indian J. Agric. Res., 44 (2): 104 – 111.
  8. Ebdon, J. S. & Gauch, H. G. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass perfor- mance trials: I. Interpretation of genotype environment interaction. Crop Sci. 42:489–496.
  9. Farshadfar, E. & Sutka, J. (2006). Biplot analysis of genotype-environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica, 54(4): 459-467.

10. Gower, J. C. & Hand, D. J. (1996). Biplots. Chapman and Hall, UK.

  1. Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 88: 705-715.
  2. Gauch, H. G. & Zobel, R. W. (1996). AMMI analysis of yield trials .In: Genotype-by-Environment Interaction, Kang MS and HG Gauch (Eds.). Boca Raton CRE CRC, New York, USA, pp. 85-122.
  3. Hanamaratti, N. G., Salimath, P. M., Vijayakumar, C. H. M., Ravikumar, R. L., Kajjidoni, S. T. & Chetti, M. B. (2009). Genotypic stability of superior near isogenic introgression lines for productivity in upland Rice. Karnataka J. Agric. Sci. 22(4): 736-740
  4. Laxmi, R. R. & Gupta, R. (2000). Different approaches for stability measures in relation to genotype-environment interaction. Crop Res., 20(1): 118-125.
  5. Mostafavi, K., Choukan, R., Taeb, M., Majidi Heravan, E. & Bihamta, M. R. (2011). Genetic Potential Evaluation of Iranian Corn Inbred Lines Using Griffing Diallel and AMMI Model. J. of Agr. Research. 2(3): 67-79. (In Farsi).
  6. Nikkhah, H. R., Yousefi, A., Mortazavian, S. M. & Arazmjoo, M. (2007). Analysis of yield stability of barley (Hordeum vulgare L.) genotypes using additive main effects and multiplicative interaction (AMMI) model. Iranian Journal of Crop Sciences. Vol. 9. No. 1(33): 1-12 (In farsi).
  7. Saeid, A., Moghadam, M. & Mohammadi, A. (2005). Investigation of yield stability in rice cultivars and lines using AMMI analysis. Abstract article of 8th Iranian congress in agronomy and plant breeding. Gilan University, Rasht, p.168. (In Farsi).
  8. Sanni, K. A., Ariyo, O. J., Ojo, D. K., Gregorio, G., Somado, E. A., Sanchez, I., Sie, M., Futakuchi, K., Ogunabayo, S. A., Guel, R. G., & Wopereis, M. C. S. (2009). Additive main effects and multiplicative interaction analysis of grain yield performance in rice genotypes across environments. Asian J. Plant Sci, 8(1): 48-53.
  9. SAS Institute. (2002). SAS/STAT® user’s guide, SAS Institute, Cary, NC, USA.
  10. Stanley, O., Samante, P. B., Wilson, T., Anna, M. M. & Medley, J. C. (2005). Targeting Cultivars onto Rice Growing Environments Using AMMI and SREG GGE Biplot Analyses. Crop sci. 45:2414–2424 (2005)
  11. Tarakanovas, P., & Ruzgas, V. (2006). Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agric. Res. 4: 91-98.
  12. Tariku S., Lakew, T., Bitew, M. & Mitiku, A. (2013). Genotype by environment interaction and grain yield stability analysis of rice (Oryza sativa L.) genotypes evaluated in north western Ethiopia. Net J. Agric. Sci. 1(1): 10-16.
  13. Vijayakumar, C. H. M., Ahmed, M. I., Viraktamath, B. C., Balakrishnan, R. & Ramesha, M. S. (2001). Genotype × environment interaction effects on yield of rice hybrids in India. Indian Journal of Genetics and Plant Breeding, 61(2): 101-106.
  14. Yan, W. (2001). GGEbiplot - A Widows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J. 93: 1111 – 1118.
  15. Yan, W. & Hunt, L. A. (2002). Biplot analysis of multi-environment trial data, In M. S. Kang, ed. Quantitative Genetics, Genomics and Plant Breeding. CAB International, Willingford.