شناسایی آلل‌های زیرواحدهای سبک گلوتنین در ژنوم D گندم نان و خویشاوندان وحشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 استاد، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

در این پژوهش به‌منظور شناسایی زیرواحدهای سبک گلوتنین (LMW-GS) از ژنوم D، 110 نمونه از گونه‌های گیاهی گندم نان،Aegilops crassa ، Ae. cylindrica و Ae. tauschii. ارزیابی شد. در مجموع با توجه به نتایج آنالیز ژل‌های SDS-PAGE چهار آلل شناسایی شد. آلل a با فراوانی 45 درصد دارای بیشترین فراوانی و پس از آن آلل‌های b، c و d به‌ترتیب دارای فراوانی‌های 1/38 ، 8/11 و 1/9 درصد بودند. در گونة Ae. crassa، آلل‌های b و c به‌ترتیب دارای بیشترین و کمترین فراوانی‌اند. آلل‌های a و (c و d) به‌ترتیب در Ae. cylindrica بیشترین و کمترین فراوانی‌ را دارند. در Ae. tauschii، آلل‌های a و d به‌ترتیب دارای بیشترین و کمترین فراوانی‌اند. در T. aestivum، آلل‌های b و d به‌ترتیب بیشترین و کمترین فراوانی را دارند. تنوع ژنتیکی (ζ) در جمعیت‌های گندم نان، Ae. crassa، Ae. cylindrica و Ae. tauschii به‌ترتیب 6564/0، 5792/0، 6378/0 و 6214/0 برآورد شد. همچنین تنوع ژنتیکی متوسط (H) برای کل جمعیت 6294/0 به‌دست آمد. نتایج این تحقیق نشان می‌دهد که خویشاوندان وحشی گندم دارای آلل‌های متنوعی‌اند که از این آلل‌ها می‌توان در برنامه‌های اصلاحی به‌منظور بهبود گلوتنین استفاده کرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Identification of low molecular weight glutenin subunits in Triticum aestivum and the D genome of wild related wheat

نویسندگان [English]

  • Seyvan Ahmadi 1
  • Mohammad-Reza Naghavi 2
  • Ali Akbar Shah Nejat Booshehri 2
1 Graduated Student, University College of Agriculture & Natural Resources, University of Tehran
2 Professor, University College of Agriculture & Natural Resources, University of Tehran
چکیده [English]

In this study, 110 samples of bread wheat, Aegilops crassa, Ae. cylindrica and Ae. tauschii were investigated to identify Low-Molecular-Weight Glutenin Subunits. Overall, the four alleles in term of the analysis of SDS-PAGE gels were detected. The ʻaʼ allele with 45% has the greatest frequency, and after that, ʻbʼ, ʻcʼ and ʻdʼ alleles were with 38.1%, 11.8% and 9.1% frequencies, respectively; however, in Ae. crassa, ʻbʼ and ʻcʼ alleles are the highest and lowest frequencies, respectively. The ʻaʼ and (ʻcʼ and ʻdʼ) alleles are the highest and lowest frequencies in Ae. cylindrica; nonetheless, In Ae. tauschii, ʻaʼ and ʻdʼ are the highest and lowest frequencies. In T. aestivum, ʻbʼ are the highest while ʻdʼ shows the lowest frequencies. Genetic diversity (ζ) in populations of bread wheat, Ae. crassa, Ae. cylindrica, Ae. tauschii and total population were calculated 0.6564, 0.5792, 0.6378, 0.6214 and 0.6294, respectively. Furthermore, the average genetic diversity (H) for the total population was obtained 0.6294. The results show that wild wheat relatives have various alleles that can be utilized them in breeding programs to improve glutenin.

کلیدواژه‌ها [English]

  • Low-Molecular-Weight Glutenin Subunit
  • D-genome
  • SDS-PAGE
Bamneshin, M., Naghavi, M. R., Taleii, A. R. & Aghaii, M. J. (2009). Variation of the High Molecular Weight Glutenin Subunit (HMW-GS) in Iranian accessions of Aegilops crassa. Iranian Journal of Field Crop Science; 40: 103-111.
Cassidy, B. G., Dvorak, J. & Anderson, O. D. (1998). The wheat Low-Molecular-Weight Glutenin genes: Characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics; 96:743-750.
D'Ovidio, R. & Masci, S. (2004). The low-molecular-weight Glutenin subunits of wheat gluten. J. Cereal Sci; 39: 321-339.
Dubcovsy, J., Echaide, M., Giancola, S., Rousset, M., Lou, M. C., Joppa, L. R. & Durak, J. (1997). Seed-storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theoretical and Applied Genetics; 95: 1169-1189.
Dvorak, J., Luo, M. C., Yang, Z. L. & Zhang, H. B. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics; 97: 657-670.
Gupta, R. B., Khand, K. & Macritchie, F. (1993). Biochemical basis of flour properties in bread wheat. I. Effects of variation in quantity and size distribution of polymeric protein. Journal of Cereal Science; 18: 23-41.
Gupta, R. B., & Shepherd, K. W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. I. Variation and genetic control of the subunits in hexaploid wheats. Theoretical and Applied Genetics; 80: 65-74.
Hosenian Khoshru, H., Bihamta, M. R., Hasani, M. E., Omidi, M. (2010). Allelic Diversity of Low-Molecular-Weight Glutenin Subunits in Commerical Genotypes of Iranian Bread Wheat (Triticum aestivum L.) using Specific Markers. Iranian Journal of Field Crop Science, 40, 345-354.
Ikeda, T. M., Branlard, G., Pena, R. J., Takata, K., Liu, L., Lerner, S. E. & Kolman, M. A. (2008). International collaboration for unifying Glu-3 nomenclature system in common wheats. In: Proceedings of the 11Th International Wheat Genetics Symposium. Sydney University Press.
Isadi Darbandi, A. (2008). Evaluation of LMW Glutenin in Wheat. M.Sc. thesis University of Tehran.
Jackson EA, Holt L.M., Payne P.I. 1983. Characterization of high molecular weight gliadin and Low-Molecular-Weight Glutenin Subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theoretical and Applied Genetics; 66(1): 29-37.
Laemmli, U. K. (1970). SDS-PAGE. Nature; 227: 680-685.
Liu L., Ikeda T. M., Branlard, G., Peña R. J., Rogers, W. J., Lerner, S. E., Kolman, M. A., Xia, X., Wang, L., Ma, W., Appels, R., Yoshida, H., Wang, A., Yan, Y. & He, Z. (2010). Comparison of Low Molecular Weight Glutenin Subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology; 10: 124.
McFadden E. S. & Sears, E. R. (1946). The origin of Triticum speltaandits free-threshing hexaploid relatives. Journal of Heredity; 37: 81-89, 107-116.
Naghavi, M. R., Ranjbar, M., Zali, A., Aghaei, M. J., Mardi, M. & Parseyedi, S. M. (2009). Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat. Cereal Research Communications; 37 (2): 159-167.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. In: Proceedings of National Academy of Science USA; 70: 3321-3323.
Payne, P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology and Plant Molecular Biology; 38: 141-153.
Peng, J. H., Sun, D. & Nevo, E. (2011). Domestication evolution, genetics and genomics in wheat. Moleular Breeding; 28: 281–301.
Singh, N. & Shepherd, K. (1988a). Linkage mapping of genes controlling endosperm storage proteins in wheat. 2. Genes on the long arms of group 1 chromosomes. Theoretical and Applied Genetics; 75: 642–650.
Singh, N. & Shepherd, K. (1988b). Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theoretical and Applied Genetics; 75: 628–641.
Singh, N. K., Shepherd, K. W. & Cornish, G. B. (1991). A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. Journal of Cereal Science; 14: 203-208.