Effect of Glomus intraradices fungus on quantitative, qualitative traits of wheat under nickel stress

Document Type : Research Paper

Authors

1 M. Sc. Student, Department of Agronomy, Islamic Azad University, Varamin, Varamin-Pishva Branch, Iran

2 Assistant Professor, Department of Agronomy, Islamic Azad University, Varamin, Varamin-Pishva Branch, Iran

Abstract

In order to study effect of mycorrhiza fungi application to mitigate adverse effects of nickel (Ni), a greenhouse experiment was conducted in Varamin, Iran during 2015 growing season on wheat. The experiment was conducted as factorial based on a completely randomized design, with four levels of nickel (0, 60, 120 and 180 mg per kg of soil) and two levels of mycorrhiza fungi application (with and without mycorrhiza fungi application), in three replications. The results showed that the effect of nickel treatment was significant for all measured experimental traits. The increase of nickel contamination caused a significant decrease of plant height, total dry weight per plant, root dry weight per plant and total chlorophyll content whereas, increased catalase enzyme activity and the accumulation of nickel in leaves and roots. Also mycorrhiza fungi application increased plant height, total dry weight per plant, root dry weight per plant, total chlorophyll content and the accumulation of nickel in roots whereas, decreased catalase enzyme activity and the accumulation of nickel in shoots. Generally the results of the present study indicated that mycorrhiza fungi application reduces the harmful effects of nickel stress and decreased oxidative stress damage in wheat plant.

Keywords

Main Subjects


  1. Abdel Latef, A. A. H. (2011). Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicumannuum L.). Mycorrhiza, 21, 495-503.
  2. Agrawal, B., Czymmek, K. J., Sparks, D. L & and Bais, H. P. (2013). Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in ckelhyperaccumulator Alyssum murale. Journal of Biology Chemistry, 288, 735-736.                   
  3. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphennoloxidase in Beta vulgaris. Plant Physiology, 24, 1-150.
  4. Baycu, G., Ozden, H., Tolunay, D. & Gunebakan, S. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143, 545-554.
  5. Benavides, M. P., Gallego, S. M. & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 21-34.
  6. Burken, J., Vroblesky, D. & Balouet, J. C. (2011). Phytoforensics, Dendrochemistry and Phytoscreening: New Green Tools for Delineating Contaminants from Past and Present. Environmental Science & Technology, 45(15), 6218-6226.
  7. Gajewska, E., Słaba, M., Andrzejewska, R. & Skłodowska, M. (2006). Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regulation, 49, 95-103.
  8. Garnczarska, M. & Ratajczak. L. (2000). Metabolic responses of Lemna minor to lead ions, II. Induction of antioxidant enzymes in roots. Acta physiologiae plantarum, 22, 429-432.
  9. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostina, A., Sgorbati, S. & Berta, G. (2005). The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59, 21-29.
  10. Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper.Turkish Journal of Biologi, 28, 85-90.
  11. Dhir, B., Sharmila, P., Saradhi, P. P. & Nasim, S. A. (2009). Physiological and antioxidantresponses of Salvinia natans exposed to chromium-rich wastewater, Ecotoxicology and Environmental Safety, 72, 1790-1797.
  12. Gaur, A. & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528-534.
  13. Ghasemi, R., Ghaderian, S. M. & Krämer, U. (2009). Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyper accumulator plant Alyssum inflatum. New Phytologist, 184, 566-580.
  14. Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Wright, S. & Nichols, K. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317-323.
  15. Gonzalez-Guerrero, M., Melville, L. H., Ferrol, N., Lott, J. N., Azcon-Aguilar, C. & Peterson, R. L. (2008). Ultra structural localization of heavy metals in the extra radical mycelium and spores of the arbuscularmycorrhizal fungus Glomus intraradices, Canadian Journal of Microbiology, 54, 103-110.
  16. Gosh, M. & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its hypoducts. Applied ecology and environmental research, 3(1), 1-18.
  17. Goussous, S. & Mohammad, M. (2009). Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. International Journal of Agriculture and Biology, 11, 463-467.
  18. Hildebrandt, U., Regvar, M. & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139-146.
  19. Jahromi, F., Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55, 45-53.
  20. Javaid, A. (2009). Arbuscular mycorrhizal mediated nutrition in plants. Journal of Plant Nutrition, 32, 1595-1618.
  21. Joner, E. & Leyval, C. (1997). Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytologist, 135, 353-360.
  22. Juknys, R., Vitkauskaite, G., Racaite, M. & Vencloviene, J. (2012). The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology, 7, 299-306.
  23. Khatun, S., Ali, M. B., Hahn, E. J. & Paek, K. Y.  (2008). Cooper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 64, 279-285.
  24. Koves-Pechy, K., Biro, B., Voros, I., Takacs, T., Osztoics, E. & Strasser, R. (1999). Enhanced activity of microsymbiont-host systems probed by the OJIP test. In: Photosynthesis: Mechanisms and Effects, (Ed. G. Garab) Pp. 2765-2770. Kluyver Academic Publishers.
  25. Lawlor, D. W. & Leach, E. (1985). Leaf growth and water deficits: Biochemistry in relations to biophysics. In: BAKER, N. R., W. J. DAVIS, and C. K. ONG (eds.). Control of Leaf Growth, 77-91, Cambridge University Press, Cambridge.
  26. Maksymiec, W. (1997). Effect of copper on cellular processes in higher plants. Photosynthetica, 34, 321-342.
  27. Nagajyoti, P., Lee, K. & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants. Environmental Chemistry Letters, 8, 199-216.
  28. Neumann, E. & George, E. (2005). Does the presence of arbuscular mycorrhizal fungi influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots sharing the same soil volume. New Phytologist, 166, 601-609.
  29. Paglia, D. (1997). Studies on the quantitive trait Dase. Journal of Laboratory and Clinical Medicine, 70, 158-165.
  30. 28-Pakdaman, N., Ghaderian, S. M., Ghasemi, R. & Asemaneh, T. (2013). Effects of calcium/magnesium quotients and nickel in the growth medium on growth and nickel accumulation in Pistacia atlantica. Journal of Plant Nutrition, 36, 1708-1718.
  31. Pang, X., Wang, D. & Peng, A. (2001). Effect of lead stress on the activity of antioxidant enzymes in wheat seedling. Environmental Science, Beijing, 22(5), 108-112.
  32. Pereira, E., Coelho, V., Tavares, R. M., Lino-Neto, T. & Baptista, P. (2012). Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza, 22, 41-49.
  33. Poschenrieder, C. & Barcelo, J. (2004). Water relations in heavy metal stressed plants. In: Heavy Metal Stress in Plants (ed. Prasad, M. N. V.). Springer, Berlin, 207-229
  34. Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J. P., Belimov, A. A., Gianinazzi, S.,       Strasser, J. R. and Gianinazzi-Pearson, V. (2002).Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes, Journal of Experimental Botany, 53, 1177-1185.
  35. SAS Institute Inc. (2002). The SAS System for Windows, Release 9.0. Statistical Analysi Systems Institute, Cary, NC, USA.
  36. Srivastava, S., Tripathi, R. D. & Dwivedi, U.N.  (2004). Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa an angiospermic parasite. Plant Physiology, 161, 665-674.
  37. Vivas, A., Biro, B., Nemeth, T., Barea, J. M. & Azcon, R. (2006). Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal funguscan reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biology and Biochemistry, 38, 2694-2704.
  38. Vogel-Mikus, K., Pongrac, P., Kump, P., Necemer, M. & Regvar, M. (2006). Colonization of Zn, Cd and Pb hyper accumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139, 362-371.
  39. Yang, D., Shi, G. & Song, D. (2001). The resistance reaction of Brasenia schreberi winter-bud to Cr6+ pollution. Journal of Lake Sciences, Beijing, 13(2), 169-174.
  40. Yusuf, M., Fariduddin, Q., Hayat, S. & Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86, 1-17.
  41. Zhao, Y., Peralta-Videa, J.R., Lopez-Moreno, M. L., Ren, M., Saupe, G. & Gardea-Torresdey, J. L. (2011). Kinetin increases chromium absorption, modulates iths distribution, and changes the activity of catalase and ascorbate peroxidase in Mexican Palo Verde. Environmental Science and Technology, 45, 1082-1087.
Volume 48, Issue 3 - Serial Number 3
December 2017
Pages 685-693
  • Receive Date: 19 September 2016
  • Revise Date: 20 October 2016
  • Accept Date: 21 November 2016
  • Publish Date: 22 November 2017