Effect of nano elicitors on alkaloids production and genes expression in Papaver orientale suspension culture

Document Type : Research Paper


1 Former M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran


Plant cell cultures have emerged as potential sources of secondary metabolites. Elicitors play an important role in challenging the plant defense system and altering the secondary metabolite production. Alkaloids are secondary metabolites that have been used as medicine since ancient times. Many Papaver species contain alkaloids such as papaverine, noscapine, morphine and codeine. In this study, we investigated the expression level of genes involved in the biosynthesis of alkaloids in suspension culture of Papaver orientale L. 24 and 48 hours after treatment by nano-Ag and nano-TiO2 with qRT-PCR. qRT-PCR analysis showed that DBOX, SDR, COR and CODM expression were significantly up-regulated at 24 h and 48 h in silver nanoparticles treatment while SaLAT and T6ODM down- regulated. Nano-TiO2 caused up-regulation of DBOX, COR and CODM after 48 h but SDR, SaLAT and T6ODM expression considerably up-regulated at 24 h. The high-performance liquid chromatography analysis indicated the nano-Ag is more effective than nano-TiO2 that increased papaverine, noscapine and morphine respectively 19-fold, 1.88-fold and 3.12-fold in comparison with control 48 h after treatment. This finding indicates that we can use the cell suspension culture of Papaver orientale L. as source of important alkaloids particular morphin and noscapine.


Main Subjects

  1. Allen, R. S., Miller, J. A., Chitty, J. A., Fist, A. J., Gerlach, W. L. & Larkin, P. J. (2008). Metabolic engineering of morphinan alkaloids by over‐expression and RNAi suppression of salutaridinol 7‐O‐acetyltransferase in opium poppy. Plant Biotechnology Journal, 6(1), 22-30.
  2. Beaudoin, G. A. & Facchini, P. J. (2014). Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta, 240(1), 19-32.
  3. Castiglione, M. R., Frediani, M., Ravalli, C., Venora, G. & Cremonini, R. (2009). Cytological characterization of Vicia oroboides Wulfen in Jacq. Protoplasma236(1-4), 21-27.
  4. Chen, X. & Facchini, P. J. (2014). Short‐chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. The Plant Journal, 77(2), 173-84.
  5. Cho, H. Y., Son, S. Y., Rhee, H. S., Yoon, S. Y. H., Lee-Parsons, C. W. & Park, J. M. (2008). Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Journal of biotechnology135(1), 117-122.
  6. Croteau, R., Kutchan, T. M. & Lewis, N. G. (2000). Natural products (secondary metabolites). Biochemistry and Molecular Biology of Plants, 24, 1250-319.
  7. Cui, H., Zhang, P. & Gu, W. (2009). Application of anatase TiO2 sol derived from peroxotitannic acid in crop plant diseases control and growth regulation. NSTI-Nanotech, 2, 286-289.
  8. Daud, Z. & Keng, C. L. (2006). Effects of plant growth regulators on the biomass of embryogenic cells of Cyperus aromaticus (Ridly) Mattf and Kukenth. Biotechnol5, 75-78.
  9. De Luca, V., Salim, V., Atsumi, S. M. & Yu, F. (2012). Mining the biodiversity of plants: a revolution in the making. Science, 336(6089), 1658-61.
  10. Facchini, P. J. & De Luca, V. (2008). Opium poppy and Madagascar periwinkle: model non‐model systems to investigate alkaloid biosynthesis in plants. The Plant Journal, 54(4), 763-84.
  11. Gajjar, P., Pettee, B., Britt, D. W., Huang, W., Johnson, W. P. & Anderson, A. J. (2009). Antimicrobial activities of commercial nanoparticles against an environmental soil microbe Pseudomonas putida KT2440. Journal of Biological Engineering, 3(9), 1-3.
  12. Hagel, J. M., Beaudoin, G. A., Fossati, E., Ekins, A., Martin, V. J. & Facchini, P. J. (2012). Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. Journal of Biological Chemistry, 287(51), 42972-83.
  13. Hagel, J. M. & Facchini, P. J. (2010). Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 6(4), 273-5.
  14. Hamill, J. D. & Rhodes, M. J. C. (1993). Manipulating secondary metabolism in culture. In Biosynthesis and Manipulation of Plant Products (pp. 178-209). Springer Netherlands.
  15. Hashemi, S. M. & Naghavi, M. R. (2016). Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell, Tissue and Organ Culture (PCTOC)125(1), 31-41.
  16. Huang, F. C. & Kutchan, T. M. (2000). Distribution of morphinan and benzophenanthridine alkaloid gene transcript accumulation in the opium poppy Papaver somniferumPhytochemistry, 53, 555-564.
  17. Khodayari, M. (2014). The effect of elicitors on genes expression in some alkaloids production of P. somniferum L.. Ph.D. Thesis. Faculty of Agronomy & Plant Breeding Tehran University, Iran.
  18. Levine, A., Tenhaken, R., Dixon, R. & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell79(4), 583-593.
  19. Makkar, H. P., Siddhuraju, P., Becker, K., Makkar, H. P., Siddhuraju, P. & Becker, K. (2007). Trypsin Inhibitor (pp. 1-6). Humana Press.
  20. Monica, R. C. & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62(2), 161-5.
  21. Murthy, H. N., Lee, E. J. & Paek, K. Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 1-6.
  22. Namdeo, A. G. (2007). Plant cell elicitation for production of secondary metabolites: a review. Pharmacognosy reviews, 1(1), 69-79.
  23. Nyman, U. & Bruhn, J. G. (1979). Papaver bracteatum-A summary of current knowledge. Planta medica, 35, 98-117.
  24. Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M. & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. Acs Nano, 7(10), 8972-80.
  25. Prasad, R., Kumar, V. & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-13.
  26. Raei, M., Angaji, S. A., Omidi, M. & Khodayari, M. (2014). Effect of abiotic elicitors on tissue culture of Aloe vera. Journal of Biosciences (IJB), 5(1), 74-81.
  27. Rao, S. R. & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances20(2), 101-153.
  28. Sariyar, G. & Shamma, M. (1986). Six alkaloids from Papaver species. Phytochemistry25(10), 2403-2406.
  29. Sariyar, G. (2002), Biodiversity in the alkaloids of Turkish Papaver species. Pure and applied chemistry, 74(4), 557-74.
  30. Schilmiller, A. L., Last, R. L. & Pichersky, E. (2008). Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 54(4), 702-11.
  31. Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P. & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 1-21.
  32. Shafiee, A., Lalezari, I., Nasseri‐Nouri, P. & Asgharian, R. (1975). Alkaloids of Papaver orientale and Papaver pseudo‐orientale. Journal of pharmaceutical sciences, 64(9), 1570-2.
  33. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta physiologiae plantarum35(4), 985-999.
  34. Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R. & Carling, D. (2005). Ca 2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism2(1), 21-33.
  35. Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., Rose, J., Liu, J. & Bernhardt, E. S. (2011). More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environmental Science & Technology, 45(6), 2360-7.
  36. Zakaria, R. A., Hour, M. H. & Zare, Z. (2013). Callus production and regeneration of the medicinal plant Papaver orientale. African Journal of Biotechnology, 31(54), 11152-6.
  37. Zhao, J., Davis, L. C. & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283-333.
  38. Ziegler, J., Facchini, P. J., Geißler, R., Schmidt, J., Ammer, C., Kramell, R., Voigtländer, S., Gesell, A., Pienkny, S. & Brandt, W. (2009). Evolution of morphine biosynthesis in opium poppy. Phytochemistry, 70(15), 1696-707.


Volume 48, Issue 3 - Serial Number 3
December 2017
Pages 625-636
  • Receive Date: 29 May 2016
  • Revise Date: 31 January 2017
  • Accept Date: 01 February 2017
  • Publish Date: 22 November 2017