Evaluation of some growth and physiological responses of Chia (Salvia hispanica L.) to various moisture regimes

Document Type : Research Paper

Authors

1 Professor, Department of Agronomy, University of Tehran, Iran

2 Assistant professor, Department of Agronomy, Shahrekord University, Iran

3 Associate Professor, Department of Soil Science, University of Tehran, Iran

Abstract

Chia (Salvia hispanica L.), has achieved economic importance due to the products which are obtained from its leaves with antioxidant capacity and especially its seeds, because they contain omega 3. However, there is a lack of information on optimal agronomic management practices and especially the influence of water availability on its establishment and production. To evaluate the effect of various moisture regimes on some growth and physiological parameters of the medicinal plant of chia, a greenhouse experiment conducted at the university of Agriculture and natural Resources of Tehran, based on randomized complete blocks design with three replications.The treatments incorporate moist regimes that have been applied at 66, 57 and 43 and 35% Levels of soil Field capacity. Results demonstrated that diverce moisture regimes had a meaningful influence on most pre-examined parameters. Relative water content (RWC), the total biomass of plant, plant height, accessory branch, node number and the ultimate Leaf area decreased with increasing drought stress such that the lowest value of stated parameters is obtained in the 43% soil Field capacity. Also the highest value of ELI and root weighthad been obtained through 43% soil Field capacity. The lowest value of Fo and Fv/Fm was observed and affiliated with 66% and 43% soil Field capacity, respectively. Generally, concerning the decreasing trend of growth and physiological parameters of chia in response to drought stress and intolerance in severe water stress, it seems, in the growing stage, it needs to sufficient moisture to maintain the membrane function and Photosynthetic processes.

Keywords


  1. REFERENCES

    1. Abbasi, A. R., Sarvestani, R., Mohammadi, B. & Bagheri, A. (2014). Drought stress-induced changes at physiological and biochemical levels in some common vetches (Vicia sativa L.) genotypes. Journal of Agricultural Science and Technology, 16, 505-516.
    2. Abbasi, P. (2003). Effects of different levels salinity and water stress on growth characteristics and physiological traits Aeluropus spp. Ph.D thesis. Islamic Azad University of Tehran. Iran. (In Persian with English Summary).
    3. Alenbrant, R., Benetoli da Silva, T., Soares de Vasconcelos, A., Mourão, W. & Corte, J. (2014). O cultivo da Chia no Brasil: Futuro e perspectivas. Journal of Agricultural Science, Umuarama, 3:161-179.
    4. Alvarez-Cha´vez, L. M., Valdivia-Lo´pez, M. A., Aburto-Jua´rez, M. L. & Tecante, A. (2008). Chemical characterization of the lipid fraction of Mexican chia seed (Salvia hispanica L.). International Journal of Food Properties, 11, 687–697.
    5. Amirjan, M.R., Iranbakhsh, A. & Abnosi, M. H. (2009). Molecular mechanism of photosynthesis. Arak University, P.o. Box38156.
    6. Ayerza, R. (1995). Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. Journal of the American Oil Chemists' Society, 72(9), 1079–1081.
    7. Ayerza, R. & Coates, W. (2005). Chia: Rediscovering a forgotten crop of the Aztecs. University of Arizona Tucson, Arizona. http://www.uky.edu/Ag/CDBREC/introsheets/chia.pdf.
    8. Bajji, M., Kinet, J. & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70.
    9. Baker, N. R. & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55: 607–1621.
    10. Battaglia, M., Solorzano, R. M., Hernandez, M., Cuellar-Ortiz, S., Garcia-Gomez, B., Marquez, J. & Covarrubias, A. A. (2007). Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta, 225, 1121–1133.
    11. Blume, A. & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 27(1), 43-47.
    12. Bochicchio, R., Rossi, R., Labella, R., Bitella, B., Permiola, M. & Amato, M. (2015). Effect of sowing density and nitrogen top-dress fertilization on growth and yield of Chia (Salvia hispanica L.) in a Mediterranean environment. Italian Journal of Agronomy, 10:163-166.
    13. Borsani, O., Valpuesta, V. & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024-1030.
    14. Bowman, M. J., Park, W., Bauer, P. J., Udall, J. A. & Page, J.T. (2013). RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress. PLOS ONE, 8(12): e82634.
    15. Bray, E. A. (1993). Molecular responses to water deficit. Plant Physiology, 103: 1035-1040.
    16. Chabak, B. (1996). Assess the physiological indexes of drought resistance in white peas. Master's thesis, Faculty of Agriculture, Islamic Azad University of Karaj.
    17. Dedio, W. (1975). Water relations in wheat leaves as screening tests for drought resistance. Canadian Journal of Plant Science, 55: 369-378.
    18. Demirevska, K., Simova-Stoilova, L., Vassileva, V., Vaseva, I., Grigorova, B. & Feller, U. (2008). Drought-Induced Leaf protein alteration in sensitive and tolerant wheat varieties. Field Crop Research, 34: 79-102.
    19. Epling, C. C. (1940). A Revision of salvia, subgenus Calosphace. Verlag des Repertoriums, Fabeckstr. 49, Berlin.
    20. Fallahi, J., Ebadi, T. & Ghorbani, R. (2009). The effect of salt and osmotic stress on seed germination of clary (Salvia sclarea L.). Environmental stress and agricultural science, 1: 57-67.
    21. Gardner, F.P., Pearce, R. B. & Mitchell, R. L. (1985). Physiology of crop plants. Publication of Iowa State University. p. 327.
    22. Gerik, T. J., Faver, K. L., Thaxton, P. M. & El-Zik, K. M. (1996). Late season water stress in cotton: I. Plant growth, water use and yield. Crop Science, 36:914-921.
    23. Ghamarnia, H. & Gowing, J. W. (2005). Effect of water stress on three wheat cultivars. ICID 21st European Regional Conference. 15-19 May. Frankfurt (Oder) and Slubice-Germany and Poland.
    24. Gue, B., Liang, Y. C., Zhu, Y. G. & Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743-749.
    25. Gunasekera, D. & Berkowitz, G. A. (1992). Evaluation of contrasting cellular level acclimation responses to leaf water deficits in three wheat genotypes. Plant Science, 86: 1-12.
    26. Hasani, A. (2006). The effect of water stress on growth, yield and essential oil of Badrashbu. Iranian Journal of Medical & Aromatic Plants, 22(3): 256-261.
    27. Havaux, M. & Niyogi, K. K. (1999). The violoxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences, 96: 8762- 8767.
    28. Havaux, M., Emez, M. & Lannoye, R. (1998). Selection de varieties de ble dur (Triticum durum Desf.) et de ble tendre (Triticum aestivum L.) adapteesd a la secheresse par la mesure de l’extinction de la fluorescence de la chlorophylle in vivo. Agronomie, 8(3): 193-199.
    29. Herman, S., Garrido, M., Baginsky, C., Valenzuela, A., Morales, L., Valenzuela, C., Pavez, S. & Alister, S. (2016). Effect of water availability on growth, water use efficiency and omega3 (ALA) content in two phenotypes of chia (Salvia hispanica L.) established in the arid Mediterranean zone of Chile. Agricultural Water Management, 173: 67–75.
    30. Hong, Z., Lakkineni, K., Zhang, Z. & Verna, P. S. (2000). Removal of feedback inhibition of 1–pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plant from osmotic stress. Plant Physiology, 122, 1129–1136.
    31. Hsiao, T.C. (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24: 519-570.
    32. Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., Nolasco, S. M. & Tomás, M. C. (2011). Characterization of Chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24:166–174.
    33. Jalalvand, A., Andalibi, B., Tavakoli, A. & Moradi, M. (2017). Evaluation of CCC and SA on some physiologic traits and Essential oil of Dracocephalum moldavica (Dracocephalum moldavica L.) under drought stress. Plant Production Science, 24(4): 111-128.
    34. Janda, T., Horvath, G., Szalai, G. & Paldi, E. (2007). Role of salicylic acid in the induction of abiotic stress tolerance. Salicylic Acid: A plant Hormone. Springer Publishers, Dordrecht, the Netherlands. 91-150.
    35. Jansen, P. C. M, Lemmens, R. H. M. J, Oyen, L. P. A, Siemonsma, J. S, Stavast, F. M. & Valkenburg, J. L. C. H. (1991). Plant resources of South-East Asia basic list of species and commodity grouping Pudoc, Wageningen, Netherlands.
    36. Javadipour, Z., Movahhedi Dehnavi, M. & Balouchi, H. R. (2012). Evaluation of photosynthesis parameters, chlorophyll content and fluorescence of safflower cultivars under saline condition. Electronic Journal of Crop Production, 6(2): 35-56. (In Persian with English Summary).
    37. Kabiri, R., Nasibi, F. & Farahbakhsh, H. (2014). Effect of exogenous salicylic acid on some physiological parameters and alleviation of water stress in Nigella sativa plant under hydroponic culture. Plant Production Science, 50, 43-51.
    38. Lebaschi, M. H. & Shariphi-Ashorabadi, A. (2004). Indexes Growth of some species of medicinal plants invarious conditions of water stress. Iranian Journal of Medical & Aromatic Plants, 20(3): 249-261.
    39. Lu, C. & Zhang, J. (1998). Effects of water stress on photosynthesis, chlorophyll fluorescence and photo inhibition in wheat plants. Australian Journal of Plant Physiology, 25: 883.
    40. Ludlow, M. M. & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43: 107-153.
    41. Maccaferri, M., Sanguineti, M. C., Demontis, A., El-Ahmed, A., Garcia Del Moral, L., Maalouf, F., Nachit, M., Nserallah, N., Ouabbou, H., Rhouma, S., Royo, C., Villegas, D. & Tuberosa, R. (2011). Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany, 62: 409-438.
    42. Mamnoei, E. & Seyed Sharifi, R. (2010). Study the effects of water deficit on chlorophyll fluorescence indices and the amount of proline in six barley genotypes and its relation with canopy temperature and yield. Journalof Plant Biology, 5: 51-62. (In Persian with English Summary).
    43. Marineli, R. S., Aguiar Moraes, E., Alves Leinquiste, S., Teixeira Godoy, A., Nogueira Eberlin, M. & Maróstica, M. R. (2014). Chemical characterization and antioxidant potential of Chilean seeds and oil (Salvia hispanica L.). LWT- Food Science and Technology, 59:1304–1310.
    44. Martı´nez-Cruz, O. and Paredes-Lo´pez, O. (2014). Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high performance liquid chromatography. Journal of Chromatography A, 1346, 43–48.
    45. Masoumi, A., Kafi, M., Nabati, J., Khazaei, R. & Davari, K. (2013). Effect of drought stress on water status and leaf electrolyte leakage, photosynthesis and chlorophyll fluorescence in different growth stages of two Kochia scoparia massifs in saline conditions. Iranian Jouranl of Field Crop Reserech, 10(3), 476-484. (In Farsi).
    46. Mohd Ali, N., Yeap, S. K., Ho, W. Y., Beh,B. K., Tan, S. W. & Tan, S. G. (2012). The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology, ID 171956.9 pages.
    47. Nurbakhsh, F., Koocheki, A. R. & Nassiri Mahallati, M. (2014). Effects of planting pattern and seed ratio on growth indices of intercropped sesame (Sesamum indicum L.) and bean (Phaseolus vulgaris L.). Journal of Agroecology, 7(3): 285-298. (In Persian with English Summary).
    48. Perry, L. and Metzger, J. (1980). Medicinal plants of East and Southeast Asia: attributed properties and uses. The MIT Press, Cambridge.
    49. Rampino, P., Pataleo, S., Gererdi, C., Mita, G. & Perrotta, C. (2006). Drought response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell & Environment, 29, 2143–2152.
    50. Reyes-Caudillo, E., Tecante, A. & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 2008, 107, 656–663.
    51. Sairam, R. K., Rao, K. V. & Srivastava, G. C. (2002). Diferential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyt concentration. Plant Science, 163, 1037-1046.
    52. Sajadi Nik, R. & Yadavi, A. R. (2014). Effect of nitrogen fertilizer, vermicompost and nitroxin on growth indexes, phonological stages and grain yield of sesame. Journal of Crop Production, 6(2): 73-99. (In Persian with English Summary).
    53. Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J. & Rosales, M. A. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178: 30-40.
    54. Schonfeld, M A., Johnson, R. C., Carver, B. F. & Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28:526-531.
    55. Shao, H. B., Chu, L. Y., Jaleel, C. A. & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3): 215-225.
    56. Soomro, M., Markhand, H. & Soomro, B. A. (2011). Screening Pakistani cotton for drought tolerance. Pakistan Journal of Botany, 44(1), 383-388.
    57. Stuart. N. W. (1939). Comparative cold hardiness o f scion roots from fifty apple varieties. Proceedings. Journal of the American Society for Horticultural Science, 1939(37): 330-4.
    58. Tilahun, A. & Sven, S. (2003). Mechanisms of drought resistance in grain: PSII stomatal regulationand root growth. Ethiopian Journal of Science and Technology, 26: 137-144.
    59. Ullah R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A. & Hussain, J. (2016). Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology, 53(4): 1750–1758.
    60. Zhu, X., Gong, H., Chen, G., Wang, S. & Zhang, C. (2005). Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environments, 62, 1–14.
    61. Zlatev, Z. S. & Yordanov, I. T. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. Journal of Plant Physiology, 30: 3-18.
Volume 50, Issue 4
January 2020
Pages 99-110
  • Receive Date: 23 June 2018
  • Revise Date: 21 November 2018
  • Accept Date: 04 December 2018
  • Publish Date: 21 January 2020