Document Type : Research Paper
Authors
1 Department of Plant Production and Genetics Engineering, Faculty of Agriculture, Ramin Agriculture and Natural Resources University of Khuzestan
2 Seed and Plant Improvement Department, Research and Education Center of Agricultural and Natural Resources of Khuzestan, Agricultural Research Education and Extension Organization (AREEO)
Abstract
Keywords
Main Subjects
10. Forcella, F., Benech Arnold, R.L., Sanchez, R. & Ghersa C.M. (2000). Modeling seedling emergence. Field Crops Research, 67(2), 123–139.
11. Garcia-Huidobro, J., Monteith, J.L. & Squire, G.R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Experimental Botany, 33(2), 288–296.
12. Hardegree, S.P. (2006). Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany, 98(4), 827–834.
13. Jame, Y.W. & Cutforth, H.W. (2004). Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3–4), 207–218.
14. Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verbug, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M. & Smith, J.C. (2003). An overview of APSIM, a model designed for farming system simulation. Agricultural Systems, 18(3–4), 267–288.
15. Lakzaei, S., Soltani, A., Zeinali, E., Gaderifar, F. & Jafarnodeh, S. (2017). Quantifying response of seedling emergence to temperature in rapeseed (Brassica napus L.) under field conditions. Iranian Journal of Crop Sciences, 19(3), 195–207. (In Farsi)
16. McMaster, G.S., White, J.W., Hunt, L.A., Jamieson, P.D., Dhillon, S.S. & Ortiz-Monasterio, J.I. (2008). Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates. Annals of Botany, 102(4), 561–569.
17. Meenken, E.D., Brown, H.E., Triggs, C.M., Brooking, I.R. & Forbes, M. (2016). Phenological response of spring wheat to timing of photoperiod perception: The effect of sowing depth on final leaf number in spring wheat. European Journal of Agronomy, 81(1), 72–77.
18. Ritchie, J.T. & Otter, S. (1985). Description and performance of CERES-Wheat: a user oriented wheat yield model. In: W.O. Willis (Ed), ARS Wheat Yield Project. pp. (159–175) Temple, TX: United States Department of Agriculture, Agricultural Research Service.
19. Soltani, A., Hammer, G.L., Torabi, B., Robertson, M.J. & Zeinali, E. (2006a). Modeling chickpea growth and development: phenological development. Field Crops Research, 99(1), 1–13.
20. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. & Sarparast, R. (2006b). Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1–4), 156–167.
21. Soltani, A. & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124(2), 252–260.
22. Wang, R., Bai, Y. & Tanino, K. (2004). Effect of seed size and sub-zero imbibitions temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany, 51(3), 183–197.
23. Wang, H., Cutforth, H., McCaig, T., McLeod, G., Brandt, K., Lemke, R., Goddard, T. & Sprout, C. (2009). Predicting the time to 50% seedling emergence in wheat using a Beta model. NJAS - Wageningen Journal of Life Sciences, 57 (1) 65–71.
24. Wang, R.L., Wendel, J.L. & Dekker, J.H. (1995). Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. American Journal of Botany, 82(3), 308–317.
25. Watt, M. & Bloomberg, M. (2012). Key features of the seed germination response to high temperatures. New Phytologist, 196(2), 332–336.
26. Watt, M.S., Bloomberg, M. & Finch-Savage, W.E. (2011). Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell & Environment, 34(5), 870–876.
27. Watt, M.S., Whitehead, D., Kriticos, D.J., Gous, S.F. & Richardson, B. (2007). Using a process-based model to analyse compensatory growth in response to defoliation: Simulating herbivory by a biological control agent. Biological Control, 43(1), 119–129.
28. Watt, M.S., Xu, V. & Bloomberg, M. (2010). Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling, 221(9), 1267–1272.
29. Yin, X., Kropff, M.J., McLaren, G. & Visperas, R.M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1–2), 1–16.