Increase of cell membrane stability in tobacco plant by transferring AtEXPB2 gene

Document Type : Research Paper

Abstract

Expansin protein is a component of the cell wall generally accepted to be the key regulator of cell wall extension during plant growth. Expansins loosen the cell wall in a pH-dependent manner. In this study transgenic AtEXPB2 plants were investigated in normal growth condition. Subsequently some of their physiological, biochemical and molecular traits were measured. Plant materials were transgenic lines; L3, l4, l9 and wide type plant as control. Seeds of three transgenic lines and control were cultured in selective MS and MS medium, respectively. Then transgenic seedlings were grown in greenhouse. Transgenic plants had better antioxidant enzymatic activity of catalase, glutathione peroxidase and polyphenol oxidase as well as higher photosynthetic pigments and proline content. Control plant had higher membrane phospholipid peroxidation and electrolyte leakage. Result of relative expression of AtEXPB2 revealed that this transformed gene was being expressed in transgenic lines. Generally transgenic lines had better performance in comparison to wild type plant.

Keywords

Main Subjects


1. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in
 
Beta vulgaris. Plant
Physiology
, 24(1), 1-15.
c
b
a
b
0
0.2
0.4
0.6
WT L3 L4 L9
PPO (U/mg protein)
Lines
c
20 چبل کبئ وّکبساى: افضاؾٗ پب ذٗاس غب بٗخت ا دس...
2. Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies.
 
Plant and Soil, 39(1), 205-207.
3. Boo, Y. C. & Jung, J. (1999). Water Deficit
 
Induced Oxidative Stress and Antioxidative Defenses in Rice Plants. Journal of Plant Physiology, 155(2), 255-261.
4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
 
Analytical Biochemistry, 72(1), 248-254.
5. Chance. B. &. Mahely, A. C. (1955). Assay of catalase and peroxidases.
 
Methods Enzymol. 2, 764-775.
6. Chaparzadeh, N., D'Amico, M. L., Khavari-Nejad, R. A., Izzo, R. & Navari-Izzo, F. (2004). Antioxidative responses of
 
Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42(9), 695-701.
7. Choe, H. T. & Cosgrove, D. J. (2010). Expansins as agents in hormone action. In
 
Plant Hormones - i ge e he l d
8. Choi, D., Lee, Y., Cho, H. T. & Kende, H. (2003). Regulation of expansin gene expression affects growth and development in transgenic rice plants.
 
The Plant Cell, 15(6), 1386-1398.
9. Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins.
 
Nature 407, 321-326.
10. DaCosta, M. & Huang, B. (2007). Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress.
 
Journal of the American Society for Horticultural Science, 132(3), 319-326.
11. Dadashi, D, 2013. Transfer of
 
AtEXPB2 gene into Nicotiana tabacum. M.S. Thesis. Faculty of Agronomy and Plant Breeding Tehran University. Iran.
12. Dat, J. F., Lopez-Delgado, H., Foyer, C. H. & Scott, I. M. (1998). Parallel changes in H
 
2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116(4), 1351-1357.
13. Day, C. D., Lee, E., Kobayashi, J., Holappa, L. D., Albert, H. & Ow, D. W. (2000). Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced.
 
Genes & development, 14(22), 2869-2880.
14. Du, H., & Klessig, D. F. (1997). Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco.
 
Plant Physiology, 113(4), 1319-1327.
15. Gechev, T. S., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes.
 
Cellular and Molecular Life Sciences CMLS, 59(4), 708-714.
16. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants.
 
Plant physiology, 59(2), 309-314.
17. Han, Y., Chen, Y., Yin, S., Zhang, M. & Wang, W. (2015). Over-expression of
 
TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. Journal of Plant Physiology, 173, 62-71
18. Jiang, H. M., Yang, J. C. & Zhang, J. F. (2007). Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress.
 
Environmental Pollution, 147(3), 750-756.
19. Kar, M. & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence.
 
Plant physiology, 57(2), 315-319.
20. Kende, H., Bradford, K., Brummell, D., Cho, H. T., Cosgrove, D., Fleming, A. & Voesenek, L. (2004). Nomenclature for members of the expansin superfamily of genes and proteins.
 
Plant Molecular Biology, 55(3), 311-314.
21. Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress.
 
Plants, 4(1), 112-166.
22. Lee, D. K., Ahn, J. H., Song, S. K., Do Choi, Y. & Lee, J. S. (2003). Expression of an expansin gene is correlated with root elongation in soybean.
 
Plant Physiology, 131(3), 985-997
23. Lee, Y., Choi, D., & Kende, H. (2001). Expansins: ever-expanding numbers and functions.
 
Current Opinion in Plant Biology, 4(6), 527-532
24. Li, F., Han, Y., Feng, Y., Xing, S., Zhao, M., Chen, Y. & Wang, W. (2013). Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development.
 
Journal of Biotechnology, 163(3), 281-291.
25. Li, F., Xing, S., Guo, Q., Zhao, M., Zhang, J., Gao, Q. & Wang, W. (2011). Drought tolerance through over-expression of the expansin gene
 
TaEXPB23 in transgenic tobacco. Journal of Plant Physiology, 168(9), 960-966.
26. Lü, P., Kang, M., Jiang, X., Dai, F., Gao, J. & Zhang, C. (2013).
 
RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta, 237(6), 1547-1559.
27. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (
 
Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398.
21 ػل مَ گ ب٘ بّى صساػ ا شٗاى، د سٍ 49 ، ؿوبس 2، تبثؼتبى 1397
28. Majewska-Sawka, A. & Nothnagel, E. A. (2000). The multiple roles of arabinogalactan proteins in plant development.
 
Plant Physiology, 122(1), 3-10.
29. Marga, F., Grandbois, M., Cosgrove, D. J. & Baskin, T. I. (2005). Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy.
 
The Plant Journal, 43(2), 181-190.
30. McQueen
 
Mason, S. J. & Rochange, F. (1999). Expansins in plant growth and development: an update on an emerging topic. Plant Biology, 1(1), 19-25.
31. McQueen-Mason, S., Durachko, D. M. & Cosgrove, D. J. (1992). Two endogenous proteins that induce cell wall extension in plants.
 
The Plant Cell, 4(11), 1425-1433.
32. Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H. & Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic
 
Arabidopsis thaliana. The Plant Journal, 18(2), 185-193.
33. Peach, C. & Velten, J. (1991). Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters.
 
Plant molecular biology, 17(1), 49-60.
34. Pereira, G. J. G., Molina, S. M. G., Lea, P. J. & Azevedo, R. A. (2002). Activity of antioxidant enzymes in response to cadmium in
 
Crotalaria juncea. Plant and Soil, 239(1), 123-132.
35. Pessarakli, M., & Szabolcs, I. (1999). Soil salinity and sodicity as particular plant/crop stress factors.
 
Handbook of plant and crop stress, 2.
36. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT
 
PCR. Nucleic Acids Research, 29(9), 45-45.
37. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.
 
Nucleic Acids Research, 30(9), 36-36.
38. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. & Fleming, A. (2001). Local expression of expansin induces the entire process of leaf development and modifies leaf shape.
 
Proceedings of the National Academy of Sciences, 98(20), 11812-11817.
39. Rasheed, P. & Mukherji, S. (1991). Changes in catalase and ascorbic acid oxidase activities in response to lead nitrate treatments in mungbean.
 
Indian Journal of Plant Physiology di
40. Rayle, D. L. & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well.
 
Plant physiology, 99(4), 1271-1274.
41. Sairam, R. K., Rao, K. V. & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.
 
Plant Science, 163(5), 1037-1046.
42. Sampedro, J. & Cosgrove, D. J. (2005). The expansin superfamily.
 
Genome Biology, 6(12),
43. Schonfeld, M. A., Johnson, R. C., Carver, B. F. & Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators.
 
Crop Science, 28(3), 526-531.
44. Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S. & Schmidt, R. (2004). Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects.
 
The Plant Cell, 16(10), 2561-2572.
45. Silva, M. D. A., Jifon, J. L., Da Silva, J. A. & Sharma, V. (2007). Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane.
 
Brazilian Journal of Plant Physiology, 19(3), 193-201.
46. Sinjali, B., Abbasi, A. R., Talei, A. R., Sarvestani, A., Dadashi, D. (2013). pBI
 
:AtEXPB Construction and transformation to Arabidopsis thaliana. Iranian Journal of Crop Science, 22(2), 191-197. (In Farsi)
47.
 
ev ović, B , Ši zč , J & Glišić, O 997 Elec oly e le k ge diffe e ce between poikilohydrous and homoiohydrous species of Gesneriaceae. Biologia Plantarum, 40(2), 299-303.
48. Sudhakar, C., Lakshmi, A. & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (
 
Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613-619.
49. Sun, T., Zhang, Y. & Chai, T. (2011). Cloning, characterization, and expression of the
 
BjEXPA1 gene and its promoter region from Brassica juncea L. Plant Growth Regulation, 64(1), 39-51.
50. Trovato, M., Mattioli, R. & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development.
 
Rendiconti Lincei, 19(4), 325-346.
51. Yang Han, Y., xiu Li, A., Li, F., rong Zhao, M. & Wang, W. (2012). Characterization of a wheat (
 
Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiology and Biochemistry, 54, 49-58.
Volume 50, Issue 1
May 2019
Pages 47-57
  • Receive Date: 01 February 2016
  • Revise Date: 13 September 2016
  • Accept Date: 17 September 2016
  • Publish Date: 22 May 2019