Study of yield stability of foxtail millet (Setaria italica L.) promising lines

Document Type : Research Paper


1 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran

2 Assistant Professor, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran.

3 Assistant Professor, Horticulture Crops Research Department, South Khorasan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Birjand, Iran.

4 Research Associate, Horticulture Crops Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Sari, Iran.

5 Assistant Professor, Horticulture Crops Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Gorgan, Iran.

6 Assistant Professor, Seed and Plant Improvement Research Department, Tehran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Varamin, Iran.

7 Associate Professor, Seed and Plant Improvement Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran.

8 Assistant Professor, Seed and Plant Improvement Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Iranshahr, Iran.

9 Research assistant, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran.


In order to stablity analysis of foxtail millet, six foxtail millet genotypes (five new genotyps and Bastan as control) were cultivated in six locations (Karaj, Gonbad, Varamin, Yazd, Sari and Birjand) across two years in a randomized complete block design with four replications. the results of combined analysis for studied traits (number of tillers, number of leaves, days to flowering, height, fresh forage yield, dry forage yield and seed yield) showed that the cultivars and environments main effects and intraction between cultivars and environments were statistically significant. all of the studied genotypes except G4 had forage yield higher than Bastan (control). the total mean (fresh forage yield) was 24.76 t/ha and the average of all cultivars except G3 and G5 was lower than total mean. the results of the stability analysis by differnrt methods showed that G5 was high yield and stable genotype in the studied environments. spearman's rank correlation between forage yield and stabilty parameters showed strong negative correlation between forage yield and superiority index (Pi) and ranking (Si). these results indicated thet use of Pi and S1 for simultanious selection of stable and high yielding foxtail millet genotypes would be efficent. reggersion deviation, Wricke oekovalenz and Shukla stability variance are equivalent in ranking genotypes for stability and could be substituted with each other in breeding programs. in conclusion, the results showed that G5 had high yield and good stability to all environments and could be introduced as a new cultivar.


Main Subjects

  1. Akcura, M., Kaya, Y., Taner, S. & Ayranci, R. (2006). Parametric stability analyses for grain yield of durum wheat. Plant Soil and Environment, 52(6), 254-261.
  2. Annicchiarico, P. (1997). Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years. Theoretical and applied genetics, 94(8), 1072-1077.
  3. Bai, Q., Fan, G., Gu, Z., Cao, X. & Gu, F. (2008). Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.). European Food Research and Technology, 228(2), 169-175.
  4. Bantayehu, M. (2009). Analysis and correlation of stability parameters in malting barley. African Crop Science Journal, 17(3), 145-153.
  5. Bavandpori, F., Ahmadi, J. & Hossaini, S. M. (2015). Yield stability analysis of bread wheat lines using AMMI model. Agricultural Communications, 3(1), 8-15.
  6. Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in agronomy, 44, 55-85.
  7. Dawson, J. C., Rivière, P., Berthellot, J. F., Mercier, F., Kochko, P. D., Galic, N., Pin, S., Serpolay, E., Thomas, M. & Giuliano, S. (2011). Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability, 3(8), 1206-1223.
  8. De la Mata, R., Voltas, J. & Zas, R. (2012). Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population. Annals of forest science, 69(4), 477-487.
  9. De Leon, N., Jannink, J. L., Edwards, J. W. & Kaeppler, S. M. (2016). Introduction to a special issue on genotype by environment interaction. Crop Science, 56(5), 2081-2089.

10. Devos, K. M., Wang, Z., Beales, J., Sasaki, T. & Gale, M. (1998). Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and applied genetics, 96(1), 63-68.

11. Doust, A. N., Kellogg, E. A., Devos, K. M. & Bennetzen, J. L. (2009). Foxtail millet: a sequence-driven grass model system. Plant Physiology, 149(1), 137-141.

12. Duvick, D. N. (1996). Plant breeding, an evolutionary concept. Crop Science, 36(3), 539-548.

13. Eberhart, S. t. & Russell, W. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36-40.

14. Farshadfar, E., Sabaghpour, S. H. & Zali, H. (2012). Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science, 6(3), 514- 524.

15. Fasahat, P., Muhammad, K., Abdullah, A., Bhuiyan, M. A. R., Ngu, M. S., Gauch, H. G. & Ratnam, W. (2014). Genotype× environment assessment for grain quality traits in rice. Communications in Biometry and Crop Science, 9(2), 71-82.

16. Fasahat, P., Rajabi, A., Mahmoudi, S., Noghabi, M. & Rad, J. (2015). An overview on the use of stability parameters in plant breeding. Biometrics & Biostatistics International Journal, 2(5), 1-11.

17. Fikere, M., Tadesse, T. & Letta, T. (2008). Genotype-environment interactions and stability parameters for grain yield of faba bean (Vicia faba L.) genotypes grown in South Eastern Ethiopia. International Journal of Sustainable Crop Production, 3(6), 80-87.

18. Gauch, H. G. & Zobel, R. W. (1988). Predictive and postdictive success of statistical analyses of yield trials. Theoretical and applied genetics, 76(1), 1-10.

19. Goa, Y. & Mohammed, H. (2013). Genotype x environment interaction and yield stability in Field pea (pisum sativum L.) tested over different locations in Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 3(19), 91-100.

20. Gouvêa, L. R. L., Silva, G. A. P., Verardi, C. K., Silva, J. Q., Scaloppi-Junior, E. J. & De Souza Gonçalves, P. (2012). Temporal stability of vigor in rubber tree genotypes in the pre-and post-tapping phases using different methods. Euphytica, 186(3), 625-634.

21. Hills, A. & Penny, S.-A. (2005). Guide to growing summer grain & forages in the south coast region. Retrieved from Western Australia.

22. Hoffmann, C. M., Huijbregts, T., van Swaaij, N. & Jansen, R. (2009). Impact of different environments in Europe on yield and quality of sugar beet genotypes. European Journal of Agronomy, 30(1), 17-26.

23. Kang, M. & Miller, J. (1984). Genotype x environment interactions for cane and sugar yield and their implications in sugarcane breeding. Crop Science, 24(3), 435-440.

24. Kang, M. S. (1997). Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62, 199-252.

25. Kang, M. S. (2002). Genotype-environment interaction: progress and prospects, Quantitative genetics, genomics and plant breeding. (pp. 221-243). USA: CABI.

26. Karimizadeh, R., Mohammadi, M., Sabaghnia, N. & Shefazadeh, M. K. (2012). Using different aspects of stability concepts for interpreting genotype by environment interaction of some lentil genotypes. Australian Journal of Crop Science, 6(6), 1017-1023.

27. Kaya, Y. & Taner, S. (2003). Estimating genotypic ranks by nonparametric stability analysis in bread wheat (Triticum aestivum L.). Journal of Central European Agriculture, 4(1), 47-54.

28. Kılıç, H. (2012). Assessment of parametric and non-parametric methods for selecting stable and adapted spring bread wheat genotypes in multi-environments. Journal of Animal and Plant Sciences, 22(2), 390-398.

29. Kilic, H., Akçura, M. & AKTAS, H. (2010). Assessment of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in multi-environments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 271-279.

30. Lakew, T., Tariku, S., Alem, T. & Bitew, M. (2014). Agronomic performances and stability analysis of upland rice genotypes in North West Ethiopia. International Journal of Scientific and Research Publications, 4(4), 1-9.

31. Lin, C. & Binns, M. (1988). A method of analyzing cultivar x location x year experiments: a new stability parameter. Theoretical and applied genetics, 76(3), 425-430.

32. Lin, C. & Binns, M. (1991). Genetic properties of four types of stability parameter. Theoretical and applied genetics, 82(4), 505-509.

33. Liu, Y. & Labuschagne, M. (2009). The influence of environment and season on stalk yield in kenaf. industrial crops and products, 29(2), 377-380.

34. Lubadde, G., Ebiyau, J., Akello, B. & Ugen, M. (2016). Comparison and suitability of genotype by environment analysis methods for yield-related traits of pearl millet. Uganda Journal of Agricultural Sciences, 17(1), 51-66.

35. Lubadde, G., Tongoona, P., Derera, J. & Sibiya, J. (2017). Analysis of Genotype by Environment Interaction of Improved Pearl Millet for Grain Yield and Rust Resistance. Journal of Agricultural Science, 9(2), 188.

36. Mahtabi, E., Farshadfar, E. & Jowkar, M. M. (2014). Stability analysis of yield and yield components in chickpea genotypes. Agricultural Communication, 2, 1-8.

37. Mehrani, A., Mosavat, A., Shushi, A. A., Abbasi, M. R., Najafinejad, H., Tabatabaii, S. A. & Ghasemi, A. (2013). Cultivar release: bastan, a new foxtail millet cultivar adapted to short growing season for forage production. Seed and plant production journal, 29(4), 865-867.

38. Mekbib, F. (2003). Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica, 130(2), 147-153.

39. Mikó, P., Löschenberger, F., Hiltbrunner, J., Aebi, R., Megyeri, M., Kovács, G., Molnár-Láng, M., Vida, G. & Rakszegi, M. (2014). Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica, 199(1-2), 69-80.

40. Mohammadi, R. & Amri, A.(2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432.

41. Mulusew, F., Edossa, F., Tadele, T. & Teshome, L. (2009). Parametric stability analyses in field pea (Pisum sativum L.) under South Eastern Ethiopian condition. World Journal of Agricultural Sciences, 5(2), 146-151.

42. Mut, Z., Gülümser, A. & Sirat, A. (2010). Comparison of stability statistics for yield in barley (Hordeum vulgare L.). African Journal of Biotechnology, 9(11), 1610-1618.

43. Nassar, R. & Huehn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics, 45-53.

44. Purchase, J., Hatting, H. & Van Deventer, C. (2000). Genotype× environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101-107.

45. Scapim, C. A., Oliveira, V. R., Cruz, C. D., Andrade, C. A. d. B. & Vidigal, M. C. G. (2000). Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology, 23(2), 387-393.

46. Scapim, C. A., Pacheco, C. A. P., Do Amaral Júnior, A. T., Vieira, R. A., Pinto, R. J. B. & Conrado, T. V. (2010). Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica, 174(2), 209-218.

47. Sharma, A. & Godawat, S. (1991). Phenotypic stability in foxtail millet (Setaria italica L.). The Indian Journal of Genetics and Plant Breeding, 51(3), 286-288.

48. Shi, Y., Ma, Y., Zhang, R., Ma, H. & Liu, B. (2015). Preparation and characterization of foxtail millet bran oil using subcritical propane and supercritical carbon dioxide extraction. Journal of food science and technology, 52(5), 3099-3104.

49. Shiri, M. (2013). Grain yield stability analysis of maize (Zea mays L.) hybrids under different drought stress conditions using GGE biplot analysis. Crop Breeding Journal, 3(2), 107-112.

50. Shukla, G. (1972). Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29(2), 237-245.

51. Simmonds, N. W. (1981). Genotype (G), environment (E) and GE components of crop yields. Experimental Agriculture, 17(4), 355-362.

52. Sreenivasulu, N., Miranda, M., Prakash, H. S., Wobus, U. & Weschke, W. (2004). Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. Journal of plant physiology, 161(4), 467-477.

53. Suma, P. F. & Urooj, A. (2012). Antioxidant activity of extracts from foxtail millet (Setaria italica). Journal of food science and technology, 49(4), 500-504.

54. Temesgen, T., Keneni, G., Sefera, T. & Jarso, M. (2015). Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. The Crop Journal, 3(3), 258-268.

55. Wachira, F., Ng'etich, W., Omolo, J. & Mamati, G. (2002). Genotype× environment interactions for tea yields. Euphytica, 127(2), 289-297.

56. Wricke, G. (1962). Uber eine Methode zur Erfassung der okologischen Streubreite in Feldversuchen. Journal of Plant Breeding, 47(1), 92-95.

57. Yahaya, Y., Echekwu, C. & Mohammed, S. (2006). Yield stability analysis of pearl millet hybrids in Nigeria. African Journal of Biotechnology, 5(3), 249-253.

58. Yan, W. & Hunt, L. (2001). Interpretation of genotype× environment interaction for winter wheat yield in Ontario. Crop Science, 41(1), 19-25.

59. Yan, W. & Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. USA: CRC press.

60. Yousefi, B., Tabaie-Aghdaie, S., Assareh, M. & Darvish, F. (2010). Evaluation of Stability Parameters for Discrimination of Stable, Adaptable and High Flower Yielding Landraces of Rosa damascena. Journal of Agricultural Science and Technology, 13, 99-110.

61. Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., Yue, Z. & Wang, W. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature biotechnology, 30(6), 549-554.

62. Zhang, P. P., Hui, S., Ke, X. W., Jin, X. J., Yin, L. H., Yang, L., Yang, Q., Wang, S., Feng, N. J. & Zheng, D. F. (2016). GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes. Journal of Integrative Agriculture, 15(6), 1218-1227.


Volume 49, Issue 4
March 2019
Pages 161-173
  • Receive Date: 26 December 2017
  • Revise Date: 24 January 2018
  • Accept Date: 10 February 2018
  • Publish Date: 20 February 2019