Document Type : Research Paper
Author
Abstract
Keywords
Main Subjects
10. Heidarvand, L. & Amiri, R. M. (2010). What happens in plant molecular responses to cold stress?. Acta Physiologiae Plantarum, 32(3), 419-431.
11. Heidarvand, L. & Maali-Amiri, R. (2013). Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. Journal of plant physiology, 170(5), 459-469.
12. Heidarvand, L., Amiri, R. M., Naghavi, M. R., Farayedi, Y., Sadeghzadeh, B. & Alizadeh, K. H. (2011). Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian Journal of Plant Physiology, 58(1), 157-163.
13. Hosseini, M., Maali-Amiri, R., Mahfoozi, S., Fowler, D. B. & Mohammadi, R. (2016). Developmental regulation of metabolites and low temperature tolerance in lines of crosses between spring and winter wheat. Acta physiologiae plantarum, 38(4), 1-13.
14. Kazemi-Shahandashti, S. S., Maali-Amiri, R., Zeinali, H., Khazaei, M., Talei, A. & Ramezanpour, S. S. (2014). Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. Journal of plant physiology, 171(13), 1106-1116.
15. Keinänen, S. I., Hassinen, V. H., Kärenlampi, S. O. & Tervahauta, A. I. (2007). Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone. Tree Physiology, 27(9), 1243-1252.
16. Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X. & Harper, J. F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant physiology, 130(4), 2129-2141.
17. Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B. M., Lu, J., & Smalle, J. A. (2010). Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano letters, 10(7), 2296-2302.
18. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M. & Carriere, M. (2012). Accumulation, translocation and impact of TiO 2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the total environment, 431, 197-208.
19. Marty, F. (1999). Plant vacuoles. The Plant Cell, 11(4), 587-599.
20. Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Xiaoqing, L., Liang, C. & Fashui, H. (2007). Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological trace element research, 119(2), 183-192.
21. Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science, 9(10), 490-498.
22. Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological trace element research, 152(3), 403-410.
23. Mohammadi, R., Maali-Amiri, R. & Mantri, N. L. (2014). Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian journal of plant physiology, 61(6), 768-775.
24. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y. & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163.
25. Nazari, M., Amiri, R. M., Mehraban, F. H. Zeinah. & Khaneghah, H. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology, 59(2), 183-189.
26. Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22(1), 53-65.
27. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), e36-e36.
28. Popov, V. N., Orlova, I. V., Kipaikina, N. V., Serebriiskaya, T. S., Merkulova, N. V., Nosov, A. M. & Los, D. A. (2005). The effect of tobacco plant transformation with a gene for acyl-lipid δ9-desaturase from Synechococcus vulcanus on plant chilling tolerance. Russian Journal of Plant Physiology, 52(5), 664-667.
29. Shahryar, N. & Maali-Amiri, R. (2016). Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. Journal of Plant Physiology, 204, 44-53.
30. Shiu, S. H. & Bleecker, A. B. (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci stke, 113(re22), 1-13.
31. Singh, D., Kumar, S., Singh, S. C., Lal, B. & Singh, N. B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica Oleracea var. Capitata. Science of Advanced Materials, 4(3-4), 522-531.
32. Singh, K. B., Foley, R. C. & Oñate-Sánchez, L. (2002). Transcription factors in plant defense and stress responses. Current opinion in plant biology, 5(5), 430-436.
33. Stampoulis, D., Sinha, S. K. & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473-9479.
34. Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X. & Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal ofEnvironmental Sciences, 22(1), 155-160.
35. Zheng, L., Hong, F., Lu, S. & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological trace element research, 104(1), 83-91.
36. Zouhar, J., Muñoz, A. & Rojo, E. (2010). Functional specialization within the vacuolar sorting receptor family: VSR1, VSR3 and VSR4 sort vacuolar storage cargo in seeds and vegetative tissues. The Plant Journal, 64(4), 577-588.