Study of genetic parameters in breeding population of Roushan × Mahdavi with North Carolina Design III

Document Type : Research Paper

Authors

1 M. Sc. Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran

2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran

3 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran

Abstract

Drought is one of the most challenging issues in agriculture which jeopardizes the production of agricultural products, including wheat. Breeding plans to improve performance and increase drought tolerance is a major issue. Mahdavi and Roushan cultivars were crossed to increase grain yield under drought stress condition. Genetic diversity and genetic control of grain yield, yield components and drought related traits were evaluated using North Carolina Design III (NCD III). Considerable genetic variation in population was existed. Epistasis had significant role in genetic control of days to maturity, plant height, tiller number, 1000-grain weight and spike length. Meanwhile, dominance variance was greater than additive for flag leaf length and area. Bulk method is suitable for breeding this trait. For other traits epistasis was not significant and additive variance was greater than dominance in genetic control of these traits. These results showed that selection in the segregate generations of these traits could be effective and pedigree method or back cross is recommended for future breeding program of these traits. Path analysis showed that number of seeds per plant had the highest direct and indirect effect on grain yield.

Keywords

Main Subjects


  1. Abdolshahi, R., Nazari, M., Safarian, A., Sadathossini, T., Salarpour, M. & Amiri, H. (2015). Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Research, 174, 20-29.
  2. Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, S. & Mohamadi-Nejad, G. (2012). Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 59, 685-704.
  3. Ahmadi, J., Fabriki Orang, S., Zali, A., Yazdi Samadi, B., Ghanadha, M. & Taleei, A. (2009). Study of inheritance of grain yield and Yield Components under stress and non-stress conditions. Science and Technology of Agriculture and Natural Resources, 11, 201-214. (in Farsi)
  4. Ahmadi, J., Zali, A., Yazdi samadi, B., Taleei, A., Ghanadha, M. & Saeidi, A. (2003). The composition and function of genes in wheat under drought stress analysis using Diallel. Journal of Agricultural Sciences Iran, 34, 1-8. (in Farsi)
  5. Babaei Zarch, M., Fotuokian, M. & Mahmuodi, S. (2014). Evaluation of the genetic diversity of morphological some genotypes of wheat (Triticum aestivum L.) using multivariate. Journal of Crop dreeding, 6, 1-14. (in Farsi)
  6. Bhutta, W., Javaid, A. & Anwar-ul-HaqMuhammad, I. (2005). Cause and effect relations of yield components in spring wheat (Triticum aestivum L.) under normal conditions. Bioline Inter, 17, 7-12.
  7. Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A., Francia, E., Mare, C., Tandelli, A.  &Stanca, A. (2007). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1-14.
  8. Chen, X., Min, D., Ahmad Yasir, T. & Hu, Y.-G. (2012). Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 137, 195-201.
  9. Dana, I. & Dasgupta, T. (2001). Combining ability in black gram. Indian Journal of Genetics and Plant Breeding, 61, 170-171.
  10. Ehdaei, B. (2006). Plant breeding. Marze Danesh press. 454.
  11. Esmaeilzadeh Moghadam, M., Arzani, A., Rezaee, A. & Mirlohi, A. (2012). Genetic analysis of some of the traits associated with drought tolerance in wheat. Electronic Journal of Crop Production. Retrieved. 2012, from http://www.sid.ir/fa/VEWSSID/J_pdf/48613910107.pdf
  12. Gholabadi, M., Arzani, A. & Mirmohammadi Meybodi, S. (2008). Genetic analysis of morphological traits in durum wheat through the generation mean analysis in stress and non-stress. Seedand Plant Production Journal, 24, 99-116. (in Farsi)
  13. Gholparvar, A., Majidi Haravan, E., Darvish, F., Rezaee, A. & Ghasemi Pirbalooti, A. (2004). Genetic analysis of morphophysiological traits in wheat under drought conditions. Pajouhesh-va-Sazandegi,  17, 90-95. (in Farsi)
  14. Goldringer, I., Brabant, P. & Gallais, A. (1997). Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity, 79, 60-71.
  15. Hallauer, A., Carena, M. & Miranda Filho, J. (2010). Quantitative Genetics in Maize Breeding. springer.
  16. Iqbal, S., Shahzad Ahmad, M., Farooq, J., Ahmad, S., Ilyas, M., Hossain Shah, A. & Hasan, L. (2011). Genetic model analysis on seedling and maturity traits in wheat under rainfed conditions. Research Article, 5, 486-496.
  17. Kamali, M., Hoseinzade, A. & Zeinali khanghah, H. (2013). Inheritance of some quantitative traits in bread wheat (Triticum aestivum L.) under drought stress. Iranian Journal of Field Crop Science, 44, 317-326. (in Farsi)
  18. Liu, C., Yang, Z. & Hu, Y.-G. (2015). Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Research, 179, 103-112.
  19. Maydup, M., Antronietta, M., Graciano, C., Guiamet, J. & Tambussi, E. (2014). The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on eartemperature and hydraulic conductance. Field Crops Research, 167, 102-111.
  20. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current science, 80, 758-763.
  21. Mohammadi, S. (2014). The relationship between yield and its components in bread wheat under irrigation and terminal drought stress using multivariate statistical methods. Journal of Agricultural Research in Iran, 12, 99-109 .(in Farsi)
  22. Mostafavi, Kh., Hosseinzadeh, A. H. & Zeinali Khaneghah, H. (2005). Genetic Analysis of Yield and Correlated Traits in Bread Wheat. Iranian Journal of Agricultural Sciences, 36, 187-197. (in Farsi)
  23. Narjesi, V., Zeinali Khanghah, H. & Zali, A. (2007). Examine the relationship between genetic some important agronomic traits in soybean yield through multivariate statistical methods. Science and Technology of Agriculture and Natural Resources, 11, 227-236. (in Farsi)
  24. Ruostaee, M. (2000). Study on Agronomic traits for increasing grain yield of wheat in cold dryland areas. Seedand Plant Production Journal, 16, 285-299. (in Farsi)
  25. Saeidi, G., Rezaee, A., Abasi, A. & Farokhi, E. (2009). General and Specific Combining Ability for Agronomic and Seed Quality Traits in some Inbred Lines of Sunflower. Iranian Journal of Field Crop Science, 40, 105-113. (in Farsi)
  26. Taleei, A. & Beigi, A. (1996). The study of combining ability and heterosis in wheat hybridization method Diallel. Iranian Journal of Crop Sciences, 1, 67-75. (in Farsi)
  27. Toosi mojarad, M. & Ghanadha, M. (2008). Diallel analysis to estimate genetic parameters associated with traits of plant height in both normal and drought conditions. Science and Technology of Agriculture and Natural Resources, 12, 143-155. (in Farsi)
  28. Trethowan, R. & Reynolds, M. (2007). Drought Resistance: Genetic approaches for improving productivity under stress. Wheat Production in Stressed Environments. (pp.289-299) Springer Science.
  29. Ul Allah, S., Salam Khan, A., Sadique, A. & Sadique, S. (2010). Gene Action Analysis of Yield and Yield Related Traits in Spring Wheat (Triticum aestivum). International journal of agricalture and biology, 12, 125-128.
  30. Zhang, Y., Zhang, Y., Wang, Z. & Wang, Z. (2011). Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Research, 123, 187-195.