Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in Okra (Abelmoschus esculentus)

Document Type : Research Paper


1 Former M.Sc. Student, Seed Science and Technology, Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Former M.Sc. Student, Seed Science and Technology, University of Guilan, Iran

3 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran


The aim of this study was to quantify the response of germination rate to temperature and determining cardinal temperatures for different germination percentiles in Abelmoschus esculentus. Three models of non-linear regression [Quadratic, segmented and beta] were investigated to describe the temperature response of germination rate of A. esculentus over seven constant temperatures (10, 15, 20, 25, 30, 35 and 40 ˚C). Different statistical indices [Root Mean of Squares of Error (RMSE) and coefficient of determination (R2)] were used to compare models. The estimated model parameters using by beta models were more confidence than others (RMSE=0.0019, R2=0.90). The base, the optimum and the ceiling temperatures for the germination of A. esculentus were estimated to be 9.84, 30.31 and 40.63˚C, respectively. The cardinal temperatures depended on the model used for their estimation. Overall, the beta model was better suited than the other models to estimate the cardinal temperatures for the germination of A. esculentus. The greatest germination percentage (98.7) and germination rate (0.0207) was observed in 25 and 30 ˚C, respectively.


Main Subjects

  1. Akram-Ghaderi, F., Soltani, E., Soltani, A. & Miri, A. A. (2008). Effect of priming on response of
    germination to temperature in cotton. Iranian Journal of Agricultural Science and Natural Resources 15(3).
  2. Biethuizen, J. F. & Wagenvoorth, W. A. (1974). Some aspects of seed germination in vegetables. I.The determination and application of heat sums and minimum temperature for germination. Hortical Science, 2(3), 213-219.
  3. Bloomberg, M., Sedcole, J. R., Mason, E. G. & Buchan, G. (2009(. Hydrothermal time germination models for radiata pine (Pinus radiata D. Don). Seed Science Research, 19, 171-182.
  4. Bradford, K. J. & Still, D. W. (2004). Applications of hydrotime analysis in seed testing. Seed Technology, 26, 75-85.
  5. Chweya, J. A. & Eyzaguirre, P. B. (Eds) (1999). The biodiversity of traditional leafy vegetables. The Netherlands: The International Plant Genetic Resources Institute (IPGRI).
  6. Copeland, L. O. & McDonald, M. B. (1995). Principles of Seed Science and Technology. Chapman and Hall.USA.
  7. Covell, S., Ellis, R. H., Roberts, E. H. & Summerfield, R. J. (1986). The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental of Botany, 37, 705-715.
  8. Hakansson, I., Myrbeck, A. & Ararso, E. (2002(. A review of research on seedbed preparation for small grains in Sweden. Soil Tillage Research, 64, 23-40.
  9. Hoseini, M., Mojab, M. & Zamani, Gh. (2012(. Evaluation wild barley (Hordeum spontaneum Koch.), barley grass (H. murinum L.) and hoary cress (Cardaria draba L.) germination in different temperatures. In proceeding of 4th Iranian Weed Science Congress, 6th-7th February, Ahvaz, Iran. p. 108.
  10. Jafari, N., Esfahani, M. & Saburi, A. (2012). Evaluation non-linear regression for germination rate of canola (Brassica napus L.) to temperature. Iranian Crop Science, 4, 857-868.
  11. Kader, M. A. & Jutzi, S. C. (2004(. Effect of thermal and salt treatments during imbibition on germination and seedling growth of sorghum at 42/19 °C. Journal of Agronomy & Crop Science, 190, 35-38.
  12. Kamkar, B., Al-Alahmadi, M. J., Mahdavi-Damghani, A. & Villalobos, F. J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products, 35(1), 192-198.‏
  13. Kazeruni monfared, A., Rezvani Moghadam, P., Nasiri Mahalati, M. & Tokasi, S. (2012(. Investigation on the cardinal temperatures for germination of Solanum nigrum. In: Proceedings of 4th Iranian Weed Science Congress, 6th-7th February, Ahvaz, Iran. p. 122. (in Farsi)
  14. Kocabas, Z., Craigon, J. & Azam-Ali, S. N. )1999(. The germination response of Bambara groundnut (Vigna sublerrannean (L) Verdo) to temperature. Seed Science and Technology, 27, 303-313.
  15. Kochaki, A. & Momen shahroodi, H. (1997). Effect of water potential and seed size on seed germination characteristics of (Cicer arietinum). Desert Journal, 1, 53-56. (in Farsi)
  16. Labouriau, L.G. (1970). On the physiology of seed germination in Vicia graminea I. Annals Acad Brasilia Ciencia, 42, 235-262.
  17. Leblanc, M. L. (2003). The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Science, 51, 718-724.
  18. Mahmoodi, A., Soltani, E. & Barani, H. (2008). Germination response to temperature in snail medic (Medicago sativa L.). Electronic Journal of Crop Production, 1, 54-63.
  19. Matthews, D. J. & Hayes, P. (1982). Effect of temperature on germination and emergence of six cultivars of soybeans (Glycine max). Seed Science & Technology, 10, 547-555.
  20. Ong, C. K. & Monteith, J.L. (1985). Response of pearl millet to light and temperature. Field Crops Research, 11, 141-160.
  21. Parmoon, G., Moosavi, S. A., Akbari, H., & Ebadi, A. (2015). Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal, 3(2), 145-151.
  22. Ramin, A. A. 1997. The influence of temperature on germination of taree Irani (Allium amploprasum L.spp.iranicum W.). Seed Science and Technology, 25, 419-426.
  23. Shafii, B., & Price, W. J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological, and Environmental Statistics, 6(3), 356-366.‏
  24. Vigil, M.F., Anderson, R.L., and Beard, W.E. (1997). Base temperature and growing degree hour requirement for the emergence of canola. Crop Science, 37, 844-849.
  25. Yin, X., Krop, M.J., McLaren, G. & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(3), 1-16.
  26. Zeinati, E., Soltani, A., Galeshi, S. & Sadati, S. J. (2010). Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars.‏ Electronic Journal of Crop Production, 3, 23-42.