Water deficit is one of the most important factors limiting crop production including soybean. In order to evaluate and identify water deficit tolerant soybean genotypes, 40 soybean genotypes were evaluated in a randomized completely block design (RCBD) with three replications. This study was carried out under both normal and water deficit conditions, in 2015 on the research field of Seed and Plant Improvement Institute-Karaj. MP, GMP, HARM and STI indices which demonstrate the most significant correlation with grain yield in normal and water deficit stress conditions were introduced as the best indices for screening tolerant genotype. Based on biplot graph of first and second principal components, the D42×Will82, Spry×Savoy/3, Chaleston×Mostang/12 and Liana×L32/2 genotypes were introduced as water deficit tolerant genotypes with high grain yield in normal condition and GN 2171, GN 2167, GN 2087 and GN 2011 genotypes were selected as sensitive genotypes to water deficit stress. Based on the result of cluster analysis using MP, GMP, HARM and STI indices and grain yield under normal and water deficit stress condition genotypes were classified in four clusters which the most of tolerant genotypes to water deficit stress were located in the first and second clusters and the most sensitive genotypes to water deficit stress were grouped in the third and fourth clusters. The result of cluster analysis can be valuable in order to selection of genotypes with high genetic distance as parents for hybridization and development of segregating population with maximum variations.
Abdipour, M., Rezaei, A., Houshmand, S. & Bagherifard, G. (2009). Evaluation of Drought Tolerance of Indeterminate Soybean Genotypes in Flowering and Seed Filling Stages. Journal of Research in Agricultural Science. 4(2), 140-150. (In Farsi)
Aminifar, J., Mohsenabadi, G. H., Biglouei, M. H. & Samiezadeh, H. (2012). Effect of deficit irrigation on yield, yield components and phenology of soybean cultivars in Rasht region. International Journal of Agri Science, 2(2), 185-191. (In Farsi)
Arnon, I. (1972). Crop production in dry regions (Vol. 2, pp. 11-19). London: Leonard Hill.
Blum, A. (1988). Plant breeding for stress environments. CRC Press, Inc..
Board, J. E. (2002). A regression model to predict soybean cultivar yield performance at late planting dates. Agronomy Journal, 94(3), 483-492.
Bokaie, S., Babaie, H., Habibi, D., Javidfar, F. & Mohammadi, A. (2008). Evaluation of different soybean (Glycine max L.) genotypes under drought stress conditions. Journal of Agronomy and Plant Breeding, 4(1), 27-38. (In Farsi)
Daneshian, J., Hadi, H. & Jonoubi, P. (2009). Study of quantitative and quality characteristics of soybean genotypes in deficit irrigation conditions. Iranian Journal of Crop Sciences, 11(4), 393-409. (In Farsi)
Dehghani, G. H. & Alizadeh, B. (2009). A study of drought tolerance indices in canola (Brassica napus L.) genotypes. JWSS-Isfahan University of Technology, 13(48), 77-90. (In Farsi)
Desclaux, D., Huynh, T. T. & Roumet, P. (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Science,40(3), 716-722.
Emam Jome, A. (1999). Determine the genetic distance by RAPD-PCR, evaluation of drought resistance indices and analysis of adaptation in the Iranian chickpea (Doctoral dissertation, Faculty of Agriculture, Razi University, Kermanshah, Iran. (in Farsi)
FAO. (2014). Food outlook, Global Market Analysis. http://www.fao.Food outlook.com
Faraji, A. (2014). Evaluation of seed yield and stress tolerance indices in soybean lines and cultivars in gorgan area. Seed and Plant Production Journal, 30(1), 35-45.
Fereres, E. C., Gimenen, J., Berengan, J. & Fernendez, J. M. Dominguez. J. (1983). Genetic variability of sunflower cultivars in response to drought. Helia, 6, 17-21.
Fernandez, G. C. (1992, August). Effective selection criteria for assessing plant stress tolerance. In Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress (pp. 257-270).
Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop and Pasture Science, 29(5), 897-912.
Ganjali, A., Kafi, A., Bageri, A. & Shahriyari, F. (2005). Screening for drought tolerance in chickpea genotypes (Cicer arietinum L.). Iranian Journal of Agricultural Sciences. 3(1): 103-122. (in Farsi)
Kargar, S. M. A., Ghannadha, M. R., Bozorgi-Pour, R., Atari, A. A. & Babaei, H. R. (2004). Investigation of drought tolerance indices in some soybean genotypes under restricted irrigation condition. Iranian J. Agri. Sci,35(1), 97-111. (In Farsi)
Kargar, S. M. A., Mostafaie, A., Hervan, E. M. & Pourdad, S. S. (2014). Evaluation of soybean genotypes using drought stress tolerant indices. International Journal of Agronomy and Agricultural Research, 5(2), 103-113.
Karimizadeh, R., Mohammadi, M., Ghaffaripour, S., Karimpour, F. & Shefazadeh, M. K. (2011). Evaluation of physiological screening techniques for drought-resistant breeding of durum wheat genotypes in Iran. African Journal of Biotechnology, 10(56), 12107-12117.
Khalili, M., Naghavi, M. R., Aboughadareh, A. P. & Talebzadeh, S. J. (2012). Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). Journal of Agricultural Science, 4(11), 78.
Kristin, A. S., Serna, R. R., Perez, F. I., Enriquez, B. C., Gallegos, J. A. A. Vallejo, P. R., Wassimi, N. & Kelly, J. D. (1997). Improving commonbean performance under drought stress. Crop Science, 37, 51-60.
Liu, F., Andersen, M. N., Jacobsen, S. E. & Jensen, C. R. (2005). Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environmental and Experimental Botany, 54(1), 33-40.
Maroufi, A. (1998). Chromosomal localization drought tolerance indices in Wheat. M.Sc. thesis, Faculty of Agriculture, Razi University, Kermanshah, Iran. (in Farsi)
Masoumi, H., Masoumi, M., Darvish, F., Daneshian, J., Nourmohammadi, G. & Habibi, D. (2010). Change in several antioxidant enzymes activity and seed yield by water deficit stress in soybean (Glycine max L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 86.
Mohammad Alipour Yamchi, H., Bihamta, M. R., Peyghambari, S. A. & Naghavi, M. R. (2011). Evaluation of Drought Tolerance in Kabuli Type Chickpea Genotypes. Seed and Plant Improvment Journal, 27(3), 393-409. (In Farsi)
Najafi, A. & Geravandi, M. (2011). Assessment of indices to identify wheat genotypes adapted to irrigated and rain-fed environments. Advances in Environmental Biology, 3212-3219. (In Farsi)
Nourmand Moayyed, F. (1997). Study variation of quantitative traits and their relation to the performance of bread wheat (Triticum aestivum L.) in dry and water conditions and determine the best indices of drought resistance. M.Sc. thesis, Faculty of Agriculture, University of Tehran, Iran. Pp. 15-57. (in Farsi).
Pouresmael, M., Akbari, M. A. H. D. I., Vaezi, S. H., & Shahmoradi, S. (2009). Effects of drought stress gradient on agronomic traits in Kabuli chickpea core collection. Iranian Journal of Crop Sciences, 11(4), Pe308-Pe324. (In Farsi)
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop science, 21(6), 943-946.
Sanjari Pireivatlou, A., & Yazdansepas, A. (2010). Evaluation of wheat (Triticum aestivum L.) genotypes under pre-and post-anthesis drought stress conditions. Journal of Agricultural Science and Technology, 10, 109-121.
Schneider, K. A., Brothers, M. E. & Kelly, J. D. (1997). Marker-assisted selection to improve drought resistance in common bean. Crop Science, 37(1), 51-60.
Schneiter, A. A., Johnson, B. L. & Henderson, T. L. (1992). Rooting depth and water use of different sunflower phenotypes. In Proc. Int. Sunflower Conf., 13th, Pisa, Italy (pp. 7-11).
Silvente, S., Sobolev, A. P. & Lara, M. (2012). Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One, 7(6), e38554.
Toorchi, M., Naderi, R., Kanbar, A. & Shakiba, M. R. (2012). Response of spring canola cultivars to sodium chloride stress. Annals of Biological Research, 2(5), 312-322.
Turner, N. C., Wright, G. C. & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193-231.
Zeinali Khanghah, H., Izanlo, A., Hosseinzadeh, A. & Majnoun Hosseini, N. (2004). Determine of appropriate drought resistance indices in imported soybean cultivars. Iranian Journal of Agriculture Science, 3, 875-885. (In Farsi)
Talebkhani, M. , Babaei, H. R. and Ali Pour, H. (2018). Evaluation of tolerance to water deficit stress in diverse soybean genotypes. Iranian Journal of Field Crop Science, 48(4), 933-943. doi: 10.22059/ijfcs.2017.217007.654192
MLA
Talebkhani, M. , , Babaei, H. R. , and Ali Pour, H. . "Evaluation of tolerance to water deficit stress in diverse soybean genotypes", Iranian Journal of Field Crop Science, 48, 4, 2018, 933-943. doi: 10.22059/ijfcs.2017.217007.654192
HARVARD
Talebkhani, M., Babaei, H. R., Ali Pour, H. (2018). 'Evaluation of tolerance to water deficit stress in diverse soybean genotypes', Iranian Journal of Field Crop Science, 48(4), pp. 933-943. doi: 10.22059/ijfcs.2017.217007.654192
CHICAGO
M. Talebkhani , H. R. Babaei and H. Ali Pour, "Evaluation of tolerance to water deficit stress in diverse soybean genotypes," Iranian Journal of Field Crop Science, 48 4 (2018): 933-943, doi: 10.22059/ijfcs.2017.217007.654192
VANCOUVER
Talebkhani, M., Babaei, H. R., Ali Pour, H. Evaluation of tolerance to water deficit stress in diverse soybean genotypes. Iranian Journal of Field Crop Science, 2018; 48(4): 933-943. doi: 10.22059/ijfcs.2017.217007.654192