Quantifying seed germination response of quinoa (Chenopodium quinoa Willd) under temperature and drought stress regimes

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Asistant Professor, Seed and Plant Improvement Institute, Ministry of Agriculture, Karaj, Iran

Abstract

Quinoa (Chenepodium quinoa Willd) is a grain-like crop with high nutritional values and resistant to abiotic stresses such as salinity, drought, cold and heat. In order to study germination characteristics of quinoa seeds underdrought stress conditions at different temperatures, an experiment was conducted. Seeds were incubated on four water potential levels (0, -4, -8 and -12 bar) of  PEG and germinated at constant temperatures ranging from 5 to 35°C (5, 10, 15, 20, 25, 30, and 35 °C) in Petridishes. Results showed that germination didn’t occur with decreasing water potential to -12 Bar at low temperatures, but germination percentage achieved to %85 in -12 Bar with gradual increase in temperature from 5 to 30°C. Seed germination rate decreased with decreasing water potential at all levels of temperature. Cardinal temperatures at all levels of water potential were calculated by using two nonlinear regression models (beta and dent-like), and then their accurate predictions and performances were compared by root mean square error (RMSE) and coefficient of determination (R2). With decreasing water potential, the permissive temperature range for germination was limited. To sum up, base temperature at (0, -4, -8 & -12) Bar increased to (1, 1, 2.5 & 15°C) and regarding for ceiling temperature decreased to (54, 41, 41 and 36°C),  respectively.

Keywords


  1. Aboulhasani, M., Lakzian, A., Haghnia, G. H. & Sarcheshmehpoor, M. (2006). The study of salinity and drought tolerance of Sinorhizobium meliloti isolated from province of Kerman in vivo condition.  Journal of Field Crops Research, 4(2), 183-193. (in Farsi)
  2. Ajmal Khan, M., Gul, B. & Weber, D. J. (2001).  Influence of salinity and temperature on germination of Kochia scoparia. Wetlands Ecological Management, 9(1), 483-489.
  3. Balbaki, R. Z., Zurayk, R. A., Blelk, M. M. & Tahouk, S. N. (1999). Germinatio and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Science and Technology, 27(1), 291-302.
  4. Bewley, J. D. (1997). Seed germination and dormancy. The plant cell, 9(7), 1055.‏
  5. Dodd, G. L. & Donovan, L. A. (1999).Water potential and ionic effects on germination and seeding growth of two cold desert shrubs. American Journal of Botany, 86(1), 1146- 1153.
  6. Everitt, J. H., Alaniz, A. & Lee, J. B. (1983). Seed germination characteristic of Kochia scoparia.  Journal of Range Management, 36(1), 646-648.
  7. Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L. & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547.‏
  8. Fernandez, G. & Johnston M. (1995). Seed vigor testing in lentil, bean, and chickpea. Seed Science and Technology, 23(1), 617-627.
  9. Flores, J. & Briones, O. (2001). Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. Journal of Arid Environments, 47(2), 485-497.
  10. Gill, P. K., Shama, A. D., Singh, P. & Singh Behullar, S. (2002). Osmotic stress induced changes in germination, growth and soluble sugar content of Sorgum bicolor L. seeds. Bulgarian Journal of Plant, 28, 12-25.
  11. Hucl, P. (1993). Effect of temperature and moisture stress on the germination of diverse common bean genotypes. Canadian Journal of Plant Science, 73(3), 697-702.
  12. Jame, Y. W. & Cutforth, H. W. (2004). Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3), 207-218.
  13. James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research, 58(1), 1-31.‏
  14. Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food reviews international, 19(1), 167-177.
  15. Jacobsen, S. E., Liu, F. & Jensen, C. R. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), 281-287.
  16. Kaboli, M. & Sadeghi, M. (2001). Effect of drought stress on germination of three Onobrochis species. Pajohesh and Sazandegi, 64(2), 51-57. (in Farsi)
  17. Jacobsen, S. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J. & Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 22(2), 131-139.‏
  18. Kebreab, E. & Murdoch, A. J. (1999). Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50(334), 655-664.
  19. Kebreab, E. & Murdoch, A. J. (2000). The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Science Research, 10(2), 127-133.
  20. Michel, B. E. & Kaufman, M. R. (1973). The osmotic potential of polyethylene glycol 6000. PlantPhysiology, 51, 914-916.
  21. Nonogaki, H., Bassel, G. W. & Bewley, J. D. (2010). Germination- Still a mystery. Plant Science, 179(6), 574-581.
  22. Oelke, E. A., Putnam, D. H., Teynor, T. M. & Oplinger, E. S. (1992). Alternative field crops manual. University of Wisconsin Cooperative Extension Service, University of Minnesota Extension Service, Centre for Alternative Plant and Animal Products.
  23. Ruales, J. & Nair, B. M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa,    Willd) seeds. Food Chemistry, 48(2), 131-136.‏
  24. Piper, E. L., Boote, K. J., Jones, J. W. & Grimm, S. S. (1996). Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36(3), 1606-1614.
  25. Rahimian-Mashhadi, H., Bagheri Kazemabad, A. & Paryab, A. (1991). Effect of PEG and NaCl induced water potential at different temperatures on germination and seedling vigor of several wheat populations. Agriculture Science and Technology, 5(4), 35-42. (in Farsi)
  26. Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., ... & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341.‏
  27. Sanchez, H. B., Lemeur, R., Damme, P. V. & Jacobsen, S. E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1), 111-119.‏
  28. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M., and Sarparast, R. (2006). Modeling seedling emergence in chickpea as affected by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1), 156-167.
  29. Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F. & Zeinali, E. (2013). Seed germination modeling of wild mustard (Sinapis arvensis L.) as affected by temperature and water potential: hydrothermal time model. Journal of Plant Production, 20(1), 1-16
  30. Tabrizi, L., Nasiri Mahalati, M. & Kochaki, A. (2004). Investigation on the cardinal temperature for germination of Plantago ovate and Plantago psyllium. Iranian Journal of Field Crops Research, 2(4), 143-151. (in Farsi)
  31. Timmermans, B. G. H., Vos, J., Van Nieuwburg, J., Stomph, T. J. & Van der Putten, P. E. L. (2007). Germination rates of Solanum sisymbriifolium: temperature response models, effects of temperature fluctuations and soil water potential. Seed Science Research, 17(1), 221-231.
  32. Tolyat, M. A., Afshari, R. T., Jahansoz, M. R., Nadjafi, F., & Naghdibadi, H. A. (2014). Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. Daenensis. Seed Science and Technology, 42(1), 28-35.‏
  33. Yin, X., Krop, M. J., McLaren, G. & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(3), 1-16.