Transfer of EXPB2 gene to Nicotina tabacum for enhance drought tolerance

Document Type : Research Paper

Authors

1 Former M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Associate Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

Cell expansion and cell division are two main processes in plant growth and development. Expansin proteins play a role key in cell expansion. These non-enzyme proteins involve in many growth and developmental processes. This protein affects drought tolerance. AtEXPB2 gene belongs to these proteins family. AtEXPB2 gene mainly expresses in the root tissue. In this study the EXPB2 gene, that was isolated from Arabidopsis taliana DNA genomics, transferred to Nicotina tabacum plant. Gene transfer was performed by Agrobacterium-mediated technique. Explants were inoculated by Agrobacterium and then were planted on M.S medium contained antibiotic of kanamycin. Finally, the tolerant seedlings were transferred to pots. Polymerase chain reaction was used to confirm the transgenic plants. Good rooting of transgenic plants suggests that this gene was increased root length and density.The results suggest that the expression of these genes in the aerial parts of the plant can cause undesirable traits such as loss of flower buds and leaf loss.

Keywords

Main Subjects


  1. Aneja, M., Gianfagna, T. & Ng, E. (1999). The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regulation, 27(3), 149-155.
  2. Anjanasree, K. & Bansal, K. (2003). Isolation and characterization of ripening-related expansin cDNA from tomato. Journal of Plant Biochemistry and Biotechnology, 12, 31-35.
  3. Cattivelli, L., Fulvia Rizza, Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Mare, C., Tondelli, A. & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1), 1-14.
  4. Cho, H.-T. & Cosgrove, D.J. (2000). Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 97(17), 9783-9788.
  5. Cho, H.-T. & Cosgrove, D.J. (2002).Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell, 14(12), 3237-3253.
  6. Cosgrove, D.J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annual review of plant biology, 50(1), 391-417.
  7. Cosgrove, D.J. (2000a). Expansive growth of plant cell walls. Plant Physiology and Biochemistry, 38(1), 109-124.
  8. Cosgrove, D.J. (2000b). Loosening of plant cell walls by expansins. Nature, 407(6802), 321-326.
  9. Dal Santo, S., Fasoli, M., Cavallini, E., Tornielli, G. B., Pezzotti, M. & Zenoni, S. (2011). PhEXPA1, a Petunia hybrida expansin, is involved in cell wall metabolism and in plant architecture specification. Plant Signaling & Behavior6(12), 2031-2034.

10. Davis, L.A. & Addicott, F.T. (1972). Abscisic acid: correlations with abscission and with development in the cotton fruit. Plant Physiology, 49(4), 644-648.

11. Gallois, P. & Marinho, P. (1995). Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods in Molecular Biology-Clifton then Totowa-, 49, 39-48.

12. Guo, W., Zhao, J., Li, X., Qin, L., Yan, X. & Liao, H. (2011). A soybean βexpansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66(3), 541-552.

13. Jung, J., O’Donoghue, E. M., Dijkwel, P. P. & Brummell, D. A. (2010). Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Science, 179(1), 77-85.

14. Kwasniewski, M. & Szarejko, I. (2006). Molecular cloning and characterization of β-Expansin gene related to root hair formation in barley. Plant Physiology, 141(3), 1149-1158.

15. Lee, D. K., Ahn, J. H., Song, S. K., Do Choi, Y. & Lee, J. S. (2003). Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiology, 131(3), 985-997.

16. Li, F. & Wang, W. (2012). Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiology and Biochemistry, 54, 49-58.

17. Li, F., Xing, S., Guo, Q., Zhao, M., Zhang, J., Gao, Q., Wang, G. & Wang, W. (2011). Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. Journal of plant physiology, 168(9), 960-966.

18. Lin, C., Choi, H.-S. & Cho, H.-T. (2011). Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Molecules and Cells, 31(4), 393-397.

19. Liu, J., Zhang, F., Zhou, J., Chen, F., Wang, B. & Xie, X. (2012). Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Molecular Biology, 78(3), 289-300.

20. Murashige, T. & Skoog, F. (1980). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.

21. Murray, M. & Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326.

22. Nishitani, K. (1997). The role of endoxyloglucan transferase in the organization of plant cell walls. International Review of Cytology, 173, 157-206.

23. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. & Fleming, A. (2001). Local expression of expansin induces the entire process of leaf development and modifies leaf shape. In: Proceedingsof the National Academy of Sciences, 98(20), 11812-11817.

24. Reinhardt, D., Wittwer, F., Mandel, T. & Kuhlemeier, C. (1998). Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. The Plant Cell, 10(9), 1427-1437.

25. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. & Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99(5), 463-472.

26. Sabirzhanova, I. B., Sabirzhanov, B. E., Chemeris, A. V., Veselov, D. S. & Kudoyarova, G. R. (2005). Fast changes in expression of expansin gene and leaf extensibility in osmotically stressed maize plants. Plant Physiology and Biochemistry, 43(4), 419-422.

27. Sampedro, J. & Cosgrove, D.J. (2005). The expansin superfamily. Genome biology, 6(12), 242.

28. Sánchez-Rodríguez, C., Rubio-Somoza, I., Sibout, R. & Persson, S. (2010). Phytohormones and the cell wall in Arabidopsis during seedling growth.Trends in plant science, 15(5), 291-301.

29. Son, S. H., Chang, S. C., Park, C. H. & Kim, S. K. (2012). Ethylene negatively regulates EXPA5 expression in Arabidopsis thaliana. Physiologia Plantarum, 144(3), 254-262.

30. Vinocur, B. & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16(2), 123-132.

31. Vissenberg, K., Martinez-Vilchez, I. M., Verbelen, J. P., Miller, J. G. & Fry, S. C. (2000). In vivo colocalization of  xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. The Plant Cell, 12(7), 1229-1237.

32. Wang, G., Gao, Y., Wang, J., Yang, L., Song, R., Li, X. & Shi, J. (2011). Overexpression of two cambium‐abundant Chinese fir (Cunninghamia lanceolata) αexpansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnology Journal, 9(4), 486-502.

33. Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.

34. Won, S. K., Choi, S. B., Kumari, S., Cho, M., Lee, S. H. & Cho, H. T. (2010). Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Molecules and Cells, 30(4), 369-376.

35. Wu, Y., Thorne, E. T., Sharp, R. E. & Cosgrove, D. J. (2001). Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology, 126(4), 1471-1479.

36. Zhao, M. R., Han, Y. Y., Feng, Y. N., Li, F. & Wang, W. (2012). Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 31(4), 671-685.

37. Zhang, N. & Hasenstein, K.H. (2000). Distribution of expansins in graviresponding maize roots. Plant and Cell Physiology, 41(12), 1305-1312.

38. Zhang, X. Q., Wei, P. C., Xiong, Y. M., Yang, Y., Chen, J. & Wang, X. C. (2011). Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Reports, 30(1), 27-36.

39. ZhiMing, Y., Bo, K., XiaoWei, H., ShaoLei, L., YouHuang, B., WoNa, D., Ming, C., Hyung‐Taeg, C. & Ping, W. (2011). Root hair‐specific expansins modulate root hair elongation in rice. The Plant Journal, 66(5), 725-734.