ارزیابی آناتومیک توان احیا دو لاین DM-2 و H158A/H543R آفتابگردان دانه روغنی تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه ارومیه،ارومیه، ایران.

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

امروزه تغییرات اقلیمی و پیامد اصلی آن، تنش خشکی، به موازات افزایش جمعیت جهان، تأمین امنیت غذایی را در اکثر کشور‌های جهان با چالش جدی مواجه نموده است؛ بنابراین ضرورت توجه به مطالعات تنش خشکی، در راستای شناسایی مکانیسم‌های مقاومت در ارقام گیاهی که منتهی به حفظ پتانسیل تولید در محصولات کشاورزی می‌شوند، انکارناپذیر است. در این مطالعه ارزیابی آناتومیک دو لاین DM-2 و H158A/H543R آفتابگردان در شرایط نرمال و تنش خشکی30 درصد ظرفیت گلدانی به صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در مرحله 8 برگی انجام شد. بدین منظور ضخامت لایه‌های بافت‌های کلانشیم، اپیدرم، پارانشیم مغز و پارانشیم پوستی بافت ساقه در هر یک از شرایط نرمال و تنش خشکی بعد از رنگ‌آمیزی با استفاده از عدسی مشبک و مدرج میکروسکوپ نوری اندازه-گیری شده و تعداد سلول در ضخامت لایه بافت کلانشیم شمارش گردید. در ادامه مقایسه آناتومیک دو لاین متحمل و حساس آفتابگردان بعد از احیا نیز انجام گرفت. نتایج تجزیه واریانس نشان از تأثیر‌پذیری آناتومی ساقه از شرایط تنش داشت. بافت اپیدرم و پارانشیم مغز بیشترین ضخامت را در لاین متحمل تحت شرایط نرمال نشان دادند. بیشترین ضخامت بافت پارانشیم پوست در لاین متحمل تحت شرایط تنش و در لاین حساس تحت شرایط نرمال مشاهده شد. در شرایط احیا بین لاین‌ها اختلاف معنی‌دار در بافت اپیدرم، پارانشیم مغز و بافت پارانشیم پوست مشاهده شد. نتایج نشان داد لاین متحمل بیشترین ضخامت بافت پارانشیم پوستی را دارد، بنابراین افزایش بافت پارانشیم پوستی به عنوان جزئی از مکانیسم‌های مهم مقاومت برگشت‌ناپذیر تایید می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Anatomical evaluation of recovery capacity in two DM-2 and H158A/H543R oilseed sunflower lines under drought stress

نویسندگان [English]

  • Nasrin Akbari 1
  • Reza Darvishzaeh 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

In this study, the anatomical evaluation of two sunflower lines DM-2 and H158A/H543R was done based on a completely randomized design with three replications at the 8-leaf stage under normal and drought stress of 30% of the pot capacity. For this purpose, the thickness of the collenchyma, epidermis, brain parenchyma and skin parenchyma tissues of the stem was measured after staining using a reticulated lens and optical microscope in each one of normal and drought stress conditions and the number of cells in collenchyma tissue layer was counted. The anatomical comparison of two tolerant and sensitive lines of sunflower was also done after recovery. The results of analysis of variance showed the influence of stem anatomy from stress conditions. Epidermal and brain parenchyma tissues showed the highest thickness in the tolerant line under normal conditions. The highest thickness of skin parenchyma tissue was observed in the tolerant line under drought stress conditions as well as in the sensitive line under normal conditions. In the recovery conditions, a significant difference was observed in the thickness of epidermis, brain parenchyma and skin parenchyma tissues of studied lines. The results showed that the tolerant line has the highest thickness of skin parenchyma tissue, so the increase of skin parenchyma tissue is confirmed as part of the important mechanisms of irreversible resistance.

کلیدواژه‌ها [English]

  • Drought tolerance
  • Parenchyma tissue
  • Recovery
  • Stem anatomy structure
  • Sunflower
6 منابع
Abid, M., Ali, S., Kang Qi, L., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L., & Dai, T. (2018). Physiological and
biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum
aestivum L.). Scientific Reports, 8, 4615. DOI:10.1038/s41598-018-21441-7.
Ahmad, I., Sohail, M., Hameed, M., Fatima, S., Ahmad, M.S.A., Ahmad, F., Mehmood, A., Basharat, S., Asghar,
A., Raza Shsh, S.M., & Ahmad, K.S. (2023). Morphoanatomical determinants of yield potential in Olea
europaea (L.) cultivars belonging to diversified origin grown in semi-arid environments. Plos One, 18(6),
e0286736. https://doi.org/10.1371/journal. pone.0286736.
Ahmad, H.B., Lensb, F., Capdevillea, G., Burletta, R.J., Lamarquea, L., & Delzona, S. (2017). Intraspecific
variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions.
Physiologia Plantarum, 163(1), 59-72. Doi: 10.1111/ppl.12654.
Ahmadikhah, A., & Marufinia, A. (2016). Effect of reduced plant height on drought tolerance in rice. 3 Biotech.,
6, 21.
ارزیابی آناتومیک توان احیاء دو الین -2DM و R543H/A158H آفتابگردان دانه روغنی تحت تنش خشکی 75
Akbari, N., & Darvishzaeh, R. (2023). Recovery potential of sensitive and tolerant genotypes of sunflower post
drought stress conditions. Iranian Journal of Field Crop Science, 54(4), 19-33. DOI:
10.22059/ijfcs.2023.354002.654975. (In Persian).
Anjum, S.H., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and
biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032.
Baruch, Z., & Merida, T. (1995). Effects of drought and flooding on root anatomy in four tropical forage grasses.
International Journal of Plant Sciences, 156(4), 514–521.
Blum, A. (2011). Plant breeding for water-limited environments. Springer, New York.
Child, R.D., Summers, J.E., Babij, J., Farrent, J.W., & Bruce, D.M. (2003). Increased resistance to pod shatter is
associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Journal of
Experimental Botany, 54, 1919–1930.
Chimungu, J.G., Loades, K.W., & Lynch, J.P. (2015). Root anatomical phenes predict root penetration ability and
biomechanical properties in maize (Zea mays). Journal of Experimental Botany, 66, 3151–3162.
Cox, W.J., & Jolliff, G.P. (1986). Growth and yield of sunflower and soybeen under soil water deficits. Agronomy
Journal, 18, 226-230.
David, O.A., Osonubi, O., Olaiya, C.O., Agbolade, J.O., Ajiboye, A.A., Komolafe, R.J., Chukwuma, D.M., &
Akomolafe, G.F. (2017). Anatomical response of wheat cultivars to drought stress. Ife Journal of Science,
19(2), 323-331.
Emanuel, M.E., & Wilson, C.W. (1982). Identification of a Casparian band in the hypodermis of onion and corn
roots. Canadian Journal of Botany, 60, 1529-1535.
Ferrat, I.L., & Lova, C.J. (1999). Relation between relative water content, nitrogen pools and growth of Phaseolus
vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Science, 39, 467-474.
Hayano-Kanashiro, C., Calderón-Vázquez, C., Ibarra-Laclette, E., Herrera-Estrella, L., & Simpson, J. (2009).
Analysis of gene expression and physiological responses in three mexican maize landraces under drought
stress and recovery irrigation. Plos One, 4(10), e7531. Doi: 10.1371/journal.pone.0007531.
Hosseini Sarghein, S., Carapetian, J., & Khara, J. (2011). The effects of UV radiation on some structural and
ultrastructural parameters in pepper (Capsium longum A. DC). Turkish Journal of Biology, 35, 69-77.
Hiroyuki, S.H., Hasegava, T., Fujimura, S.H., & Iwama, K. (2004). Responses of leaf photosynthesis and plant
water status in rice to low water temperature at different growth stages. Field Crops Research, 89, 71–83.
Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., & Panneerselvam, R.
(2009). Drought stress in plants: A review on morphological characteristics and pigments composition.
International Journal of Agriculture and Biology, 11(1), 100-105.
Sairam, R.K., Rao, K.V., & Srivastava, G.C. (2002). Differential response of wheat genotypes to longterm salinity
stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163,
1037–1046.
Kisman, S., Hemon, A.F., Dewi, S.M., Susilowati, L.E., & Gunawan, B.W. (2022). Changes in the anatomical
characters of root and stem of three large-seeded soybean (Glycine max L. Merrill) under drought stress. 2nd
International Conference on Environmental Ecology of Food Security, 1107(1), 012031. Doi:10.1088/1755-
1315/1107/1/012031.
Lambers, H., Chapin, F.S., & Pons, T.L. (2008). Plant Physiological Ecology, Springer: New York, NY, USA.
Lynch, J.P., Mooney, S.J., Strock, C.F., & Schneider, H.M. (2022). Future roots for future soils. Plant Cell
Environ., 45, 620–636.
Lynch, J.P., Strock, C.F., Schneider, H.M., Sidhu, J.S., Ajmera, I., Galindo-Castañeda, T., Klein, S.P., & Hanlon,
M.T. (2021). Root anatomy and soil resource capture. Plant and Soil, 466, 21–63.
Makbul, S., Güler, N.S., Durmuş, N., & Güven, S. (2011). Changes in anatomical and physiological parameters of
soybean under drought stress. Turkish Journal of Botany, 35, 369-377.
Mangena, P. (2018). Water stress: Morphological and anatomical changes in soybean (Glycine max L.). Plants,
https://www.intechopen.com/chapters/58553.
Maurel, C., & Nacry, P. (2020). Root architecture and hydraulics converge for acclimation to changing water
availability. Nature Plants, 6(7), 744-749.
Mostajeran, A., & Rhimi-Eichi, V. (2008). Drought stress effect on root anatomical characteristics of rice cultivars
(Oryza sativa L.). Pakistan Journal of Biological Science, 11(18), 2173-2183. Doi:
10.3923/pjbs.2008.2173.2183.
Mustafa, F., Ahmad, F., Hameed, M., & Sadia, B. (2019). Anatomical adaptations for drought tolerance in Lasiurus
scindicus from Punjab, Pakistan International Journal of Agriculture and Biology, 22, 290-298.
Prince, S.J., Murphy, M., Mutava, R.N., Durnell, L.A., Valliyodan, B., Shannon, J.G., & Nguyen, H.T. (2017).
Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental
Botany, 68, 2027–2036.
76 مجلة علوم گیاهان زراعی ایران، دورة پنجاه و پنجم، شمارة چهارم، 1403
Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Communications in Biometry
and Crop Science, 3(1), 29–44.
Salehi-Lisar, S.Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: Causes, consequences, and
tolerance. In Drought Stress Tolerance in Plants, Springer: Cham, Switzerland. 11-16.
Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H.,
& Battaglia, M.L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse
effects. Plants, 10, 259. https://doi.org/10.3390/plants 10020259.
Shafqat,W., Mazrou, Y.S.A., Sami-ur-Rehman, Nehela, Y., Ikram, S., Bibi, S., Naqvi, S.A., Hameed, M., &
Jaskani, M.J. (2021). Effect of three water regimes on the physiological and anatomical structure of stem and
leaves of different citrus rootstocks with distinct degrees of tolerance to drought stress. Horticulturae, 7, 554.
Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2014). Effects of different treatments of salicylic acid on heat
tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa (L.). Plant
Growth Regulation, 48, 127-135.
Sorkhi, F. (2017). Effects of drought stress on some anatomical characteristics of barley leaves. Journal of Plant
Physiology and Breeding, 7(2), 11-21.
Strock, C.F., Burridge, J.D., Niemiec, M.D., Brown, K.M., & Lynch, J.P. (2021). Root metaxylem and architecture
phenotypes integrate to regulate water use under drought stress. Plant Cell Environment, 44, 49–67.
Tan, J., Ben-Gal, A., Shtein, I., Bustan, A., Dag, A., & Erel, R. (2020). Root structural plasticity enhances salt
tolerance in mature olives. Environmental and Experimental Botany, 179, 104224.
Todd, G.W., Richardson, P.E., & Sengupta, S.P. (1974). Leaf and stem anatomical anomalies in a droughtsusceptible species, Impatiens balsamina, under conditions of drought stress. Botanical Gazette, 135(2), 121-
126.
Trifilò, P., Raimondo, F., Lo Gullo, M.A., Barbera, P.M., Salleo, S., & Nardini, A. (2014). Relax and refill: Xylem
rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low
PLC values. Plant Cell Environ., 37, 2491-2499.
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N.,
Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., & Yano,
M. (2012). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought
conditions. Nature Genetics, 45, 1097–1102.
Wheeler, T.D., & Stroock, A.D. (2008). The transpiration of water at negative pressures in a synthetic tree. Nature,
455, 208-212.
Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on
physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18, 68
https://doi.org/10.1186/s12870-018-1281-x.
Zulfiqar, F., Younis, A., Akram, N.A., Riaz, A., Mansoor, F., Hameed, A., & Abideen, Z. (2020). Morphoanatomical adaptations of two Tagetes erecta (L.) cultivars with contrasting response to drought stress.
Pakistan Journal of Botany, 52(3), 801-810.