بررسی اکتوی پروتئوم و فعالیت برخی آنزیم های آنتی اکسیدانات جو تحت نتش شوری

عبدالرضا همایون، مجید جلالی، سیدعلی پیغمبری، هشتم درسنمده ۹۹، سهیلا تغلق و
مادو تعاون‌گزار

دانشگاه تهران، دانشگاه تهران، دانشگاه تهران، دانشگاه تهران، دانشگاه تهران

(تاریخ دریافت: ۹۹/۰۹/۱۸ - تاریخ نمایش: ۹۹/۰۹/۱۸)

چکیده

شوری و خشکی از عوامل ناسانگی محیطی هستند که رشد و عملکرد گیاهان زراعی را تحت تأثیر قرار می‌دهند. تنش‌ها باعث ورود دانه و رسوب در اکسیداتورها در گیاهان، از تغییر
پیان زن و متابولیسم سلول تا تغییر در سرعت رشد و عملکرد می‌شوند. در شرایط تنش، اندازه‌گیری گونه‌های فعال اکسیدون موجب خارط به اساس ترین ماکرومولکول‌های سلولی ضرور پروتئین‌ها به گونه‌های فعال اکسیدون بر عهده دارند. به این ترتیب، همان
انزیمی نش می‌دهد با یک قبائی سلول از انگوی گونه‌های فعال اکسیدانتی گیاهی‌های دو
ژنتیپ جو (افضل ولایت ۹۲)، آزمایش‌های صرب و فاکتوریل در قابل طرح کاملاً تصادفی
با ۴ کریکار در شرایط کنترل شده و تش نش شوری (۲۰۰۰ میلی مولار و ۲۰۰ میلی مولار) اجرا شد.

تش نش شوری در مرحله ۲۴ پرگی به مدت ۴۴ ساعت اعمال شد. تنش نش شوری باعث کاهش
فعالیت کاتالاز و انزیم فعالیت آنتی اکسیدان ژل نظر پروتئین‌ها به تراکم‌های آکسیدون، آکسیدون را به
گلولاتیون ریدکتاز شد. اگر چه واکنش زنتیب می‌تواند به تجزیه ذل لای الکترفونور
در بعدی نشان داد که در مقایسه با شاهد، زنتیب متحمل ۹۷ لکه پروتئینی (۳۹٪/فازیش
و ۲۰٪/ کاهش پیان) و رد زنتیب حساس ۹۷ لکه پروتئینی (۳۹٪/فازیش و ۶۷٪/کاهش‌پیان)
تغییرات معنی‌داری از خود نشان دادند. نتایج طی سنجش جرمی منجر به شناسایی پروتئین
هایی دیده در مکانیسم های آنتی اکسیدانی و تولید انرژی و سایر مکانیسم‌ها شد.

واژه‌های کلیدی: نتش شوری، جو، فعالیت آنتی اکسیدانی، پروتئوم‌ها

E-mail: arasoulnia@ut.ac.ir
تلفن: ۵۴۲۸۴۹۴۸۰

نویسنده: احمدرضا ردیورشی

* ۱۳۹۹-۰۹-۱۲
مواد و روش‌ها

کاشت بذر و اعمال تبیین‌ها
بذر این گیاهان به‌طور معمول با ۲۷ درجه سانتی‌گراد در چهار بذرگاه به طور متساوی به مدت ۴۰ ساعت در دمای ۲۳ درجه سانتی‌گراد خشک و سپس آسیاب شدند. یک گرم از پودر آسیاب‌شده داخل گروههای چینی در کوره‌های الکتریکی با دمای ۵۵۰ درجه سانتی‌گراد به مدت ۶ ساعت تبیین به وسیله‌ی خوستر ساخته شد. خوستر بایستی در ۱۰ میلی‌لیتر لیاز افتاده توسط درجه‌ی سانتی‌گراد به مدت ۴ ساعت متداول به‌طور متساوی باشد. روش خوسترسازی به‌طور معمول با گرفتن بزرگ از بزرگ‌ترین به دست آمده است.
شدار ۱۹۷۶. (Bradford, ۱۹۷۶) میکرو لیتر از نمونه برونتین محلول در بافر لیزری به مقدار ۵۵ میکرو لیتر آب دیونیزه و ۳ میلی لیتر محلول نشر فسفر اضافه شد و میزان جدید نمونه ها در طول موج ۴۹۵ نانومتر قرآت گردید.

الکتروفوروز و شناسایی برونتین‌ها

به منظور اندازه‌گیری الکتروفوروز، از زل نوار (IPG) پرای بعد اول استفاده شد و برای این‌که پرای بعد اول به دست آمده میزان برونتین به وسیلهٔ پرینت با نامر مخصوص این الکترود ۱۰۰ میلی‌متر آسکر، در هاون چینی، میزان برونتین به وسیلهٔ پرینت با نامر مخصوص این الکترود ۱۰۰ میلی‌متر و اکتش عناصر از مصرف استخراج شده بود. پس از اضافه‌کردن عناصر بالافاصله میزان کاهش جذب مخلوط باعکس در طول موج ۲۹۰ نانومتر به مدت ۲۰ ثانیه قرآت شد.

اندازه‌گیری فعالیت آنزیمی

برای اندازه‌گیری فعالیت آنزیمی کنترل از روش (۱۹۸۴) استفاده شد. ۱۰۰ میکرو لیتر بافی رای بعد اول توسط ۵ میلی‌متر محلول فسفات‌سیدیم (pH=۷.۰) حاوی ۱ میلی‌متر EDTA در هاون چینی کامل‌های میزان برونتین. محلول به مدت ۱۵ دقیقه در دمای ۴ درجه سانتی‌گراد سانتی‌فوروز شد و محلول روش‌بر از اندازه‌گیری فعالیت آنزیمی استفاده شد. محلول واکنش شامل ۲۵۰ میلی‌متر بافی فسفات ۵ میلی‌متر (pH=۷.۰) و مایکرو لیتر از مصرف استخراج شده و ۱۵ میلی‌متر پراکسیدی‌هیدرونز در هنگام اندازه‌گیری تغییرات جذب بود. کاهش جذب در طول موج ۲۴۰ نانومتر به مدت ۲۰ ثانیه قرآت شد. میزان پراکسیدی‌هیدرونز تجزیه شده به استفاده از ضریب خاموشی (ε=۶.۲۲ mM⁻¹ cm⁻¹) محاسبه شد. فعالیت آنزیمی کنترل (۱۹۸۸) Smith et al. محلول واکنش شامل ۲۵۰ میلی‌متر بافی فسفات ۵ میلی‌متر pH=۷.۵) و ۲۰۰ میلی‌متر NADPH (GSSG) محلول واکنش شامل ۲۵۰ میلی‌متر بافی فسفات pH=۷.۰) آنزیم کنترل ریزوناتور با روش آنزیمی کنترل که با تضمین به‌طور دقیق در دمای ۴ درجه سانتی‌گراد سانتی‌فوروز شد.

محتوی بیونی

جدول مقایسه‌بندی نشان می‌دهد که درصد سد هم‌اکنون با پرای پراکسید بازیابی تئوری و محاسبه شد. سنجش فعالیت آنزیم کسیداز مهاجران آزمی کنترل که میزان سرعت واکنش به روش هم‌اکنون با پرای پراکسید بازیابی تئوری و محاسبه شد. سنجش فعالیت آنزیم کنترل ریزوناتور با روش هم‌اکنون با پرای پراکسید بازیابی تئوری و محاسبه شد.
جدول 1- مقایسه میانگین اثر سطوح مختلف شری قفلشده سدیم و پتاسیم در برعکس گوره

<table>
<thead>
<tr>
<th>رقم</th>
<th>کنترل</th>
<th>شری قفلشده سدیم</th>
<th>پتاسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش بیان</td>
<td>Na⁺</td>
<td>0.68±0.13³</td>
<td>0.78±0.13³</td>
</tr>
<tr>
<td></td>
<td>K⁺</td>
<td>1.05±0.13³</td>
<td>0.85±0.13³</td>
</tr>
<tr>
<td>لاين</td>
<td>Na⁺</td>
<td>0.15±0.13³</td>
<td>1.05±0.13³</td>
</tr>
<tr>
<td></td>
<td>K⁺</td>
<td>0.15±0.13³</td>
<td>0.85±0.13³</td>
</tr>
</tbody>
</table>

شنااسایی بروتون های باخس دهنه به شوری

نتایج حاصل از تجزیه زل های دو بعدی نشان می‌دهد که در زترومیات متغییر تعداد و حساسیت 4271 و 4178 یک و پترونیه شناسایی شده است. بررسی دقیق مقایسه تیمارها با شاهد نشان می‌دهد که در مجموع در تیمارهای زترومیات متغیر و حساسیت 637 و 4271 یک و پترونیه تغییرات معنی داری داشتند. نتایج قبلی نشان می‌دهد که در مجموع، زترومیات متغیر

(1) لاک(4/20٪ افزایش و 85 ٪ کاهش) (2) لاک(4/19٪ کاهش)

نگاه کنند. (شکل 1) در بررسی اثر شوری بر روی دو زترومیات بزنکل(3) (IR1651) به همراه و حساسیت (IR129) به شوری، نتایج مشابه به دست آمد در مجموع 879 زترومیات بزنکل(3) (IR1651) به همراه و حساسیت (IR129) به شوری، نتایج مشابه به دست آمد در مجموع 879

(شکل 1) - نمودار تغییرات فراوانی که‌ها در زترومیات های چرخش و حساس به شوری

افزایش بیان با تغییر سطحی (کنترل) به‌طور مشابه به عنوان یک اثر اصلی شوری در مسیر حملوگان سیگنال وابسته به تغییر سطحی (کنترل) به‌طور مشابه به عنوان یک اثر اصلی شوری در مسیر حملوگان سیگنال
NADPH + H⁺ + NADP⁺ → NADP + H₂O

NADP⁺ + H⁺ → NADPH + H⁺

Kim et al., 2005.

Douce et al., 2001.

Melhorn et al., 1996.

Hajheydari et al., 2007.

Rajguru et al., 1999.

Wang et al., 1999.

Salekdeh et al., 2002.

Hajheydari et al., 2007.

Dadashi et al., 2006.

Kitajima et al., 2008.

Dietz et al., 2006.

Kitajima et al., 2008.

Dadashi et al., 2006.

Dadashi et al., 2006.
<table>
<thead>
<tr>
<th>Shmarhe</th>
<th>Annotation</th>
<th>NCBI nr</th>
<th>Mascot score</th>
<th>Mascot Coverage%</th>
<th>P1</th>
<th>NCBI nr (KDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Plastocyanin, chloroplastic</td>
<td>gi/130269</td>
<td>197</td>
<td>20</td>
<td>51</td>
<td>153.75, 156.7</td>
</tr>
<tr>
<td>119</td>
<td>2-cyc peroxiredoxin</td>
<td>gi/2499477</td>
<td>210</td>
<td>22</td>
<td>50</td>
<td>232.74, 245.7</td>
</tr>
<tr>
<td>136</td>
<td>Glatathion s-transfrase</td>
<td>gi/18479038</td>
<td>144</td>
<td>20</td>
<td>58</td>
<td>230.3, 245.7</td>
</tr>
<tr>
<td>152</td>
<td>Triosephosphate isomerase</td>
<td>gi/2507469</td>
<td>249</td>
<td>22</td>
<td>53</td>
<td>264.6, 275.7</td>
</tr>
<tr>
<td>165</td>
<td>Oxygen- evolving enhancer protein</td>
<td>gi/131394</td>
<td>489</td>
<td>22</td>
<td>55</td>
<td>274.6, 288.5</td>
</tr>
<tr>
<td>200</td>
<td>Myrochondrial cystein synthase</td>
<td>gi/21395827</td>
<td>383</td>
<td>26</td>
<td>53</td>
<td>223.55, 223.5</td>
</tr>
<tr>
<td>211</td>
<td>FBP Aldolase protein</td>
<td>gi/22301864</td>
<td>495</td>
<td>25</td>
<td>24</td>
<td>230.21, 243</td>
</tr>
<tr>
<td>216</td>
<td>Sedoheptulose-1.7-bisphosphatase</td>
<td>gi/1456119030</td>
<td>96</td>
<td>14</td>
<td>22</td>
<td>223.6, 223.6</td>
</tr>
<tr>
<td>220</td>
<td>Putative ascorbate peroxidase</td>
<td>gi/148763638</td>
<td>473</td>
<td>36</td>
<td>53</td>
<td>29.247.2</td>
</tr>
<tr>
<td>248</td>
<td>Photosystem I subunit VII</td>
<td>gi/11460848</td>
<td>81</td>
<td>18</td>
<td>74</td>
<td>94.8, 10</td>
</tr>
<tr>
<td>283</td>
<td>Putative thioredoxin peroxidase</td>
<td>gi/561822370</td>
<td>173</td>
<td>39</td>
<td>47</td>
<td>100.83, 115</td>
</tr>
<tr>
<td>314</td>
<td>Phosphribulo kinase, chloroplastic</td>
<td>gi/125580</td>
<td>548</td>
<td>23</td>
<td>33</td>
<td>455.5, 445.5</td>
</tr>
<tr>
<td>382</td>
<td>Super oxide dismutase</td>
<td>gi/1572627</td>
<td>359</td>
<td>32</td>
<td>53</td>
<td>19.1, 19.5</td>
</tr>
</tbody>
</table>

*Protein score is \(-10\log(P)\), where \(P\) is the probability that the observed match is a random event. Protein scores greater than 70 are significant \((p<0.05)\).

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
از آنجایی که تجمع پراکسیدیهیدروژن ناشی از واکنش سوپراکسید دیسموتاز با فعالیت ترکیبی دو آنزیم پراکسیداز و کاتالاز به منظور حفاظت سلول های گیاهی خواهد داشت، به این دو آنزیم نقش مهمی را در حفظ پراکسیدیهیدروژن ایفایی می نماید. شواهد زیادی مینی بر افزایش و کاهش فعالیت آنزیم پراکسیداز در شرایط تنش وجود دارد و ارگچه افزایش فعالیت آنزیم Bor et al., 2003 (Moradi et al., 2007; Demiral & Turkan, 2005) و پراکسیداز توسط تنش شوری در چند روز (Dionisio-Sese & Tobita, 1998)، و اگرچه افزایش شتاب افزایش فعالیت آنزیم Bor et al., 2003 (Moradi et al., 2007; Demiral & Turkan, 2005) شواهد زیادی بر افزایش و کاهش فعالیت آنزیم پراکسیداز در شرایط تنش وجود دارد و حسنات آنزیم پراکسیداز افزایش فعالیت آنزیم پراکسیداز توسط تنش شوری در چند روز (Demiral & Turkan, 2005) بودن (Bor et al., 2003) گزارش شده است، ولی شواهد منی بر کاهش فعالیت این آنزیم در شرایط شوری وجود دارد (Demiral & Turkan, 2005). شواهد منی بر کاهش فعالیت این آنزیم در شرایط شوری وجود دارد (Demiral & Turkan, 2005). شواهد منی بر کاهش فعالیت این آنزیم در شرایط شوری وجود دارد (Demiral & Turkan, 2005).
از افزایش بین بیشتر این آنزیم را در زنوتیپ متحمل
نسبت به زنوتیپ شاهد در شرایط شور بودیم.

در برای تنظیم محافظت نمایندگی در حالت که در
زنوتیپ حساس این افزایش ناجیز و تناها به صورت جزئی
می‌باشد (شکل 3). در مطالعات پروتئومیکس نیز

مراجع

Moradi et al., 2007; Shalata et al., 2001

Demiral & Turkan, 2005

Bor et al., 2003

afzaliz Fualat Ibn An'zim ir Znottip Hayi Mhtom Beh
Shoori (2001; Shalata et al., 2001; Bor et al., 2003; Moradi et al., 2007; Shalata et al., 2001; Shalata et al., 2001; Bor et al., 2003)

afzaliz Fualat Ibn An'zim ir Znottip Hayi Mhtom Beh
Shoori (2001; Shalata et al., 2001; Bor et al., 2003; Moradi et al., 2007; Shalata et al., 2001; Shalata et al., 2001; Bor et al., 2003)
از عوامل محدود کننده سنتز گلوتاتیون می باشد فعالیت این آنزیم منجر به افزایش حساسیت به شوری می گردد، لذا کاهش بیشتر این آنزیم در زنگنه های حساس ممکن است نتیجه حساسیت بیشتری بیشتر این امر در برای شناس و پرورش کلی اگزوتیون آسکوربات گلوتاتیون در برای تنش می باشد (Dat et al., 2008).

نتیجه گیری کلی
با توجه به نتایج حاصل از فعالیت آنلاین اکسیدات در متوان داشته باشد که سبب کاهش جذب دی اکسیدوزن در اثر انسداد روده ها گردد و این امر منجر به تغییر تکانه فعال اکسیژن و نظیر سیوراکسی، پروکسید هیدروفوز زردیکال های هیتروژنی لیمونید شود. با این توجه به نتایج حاصل از فعالیت آنلاین اکسیدات در کاهش آنزیم گلوتاتیون و افزایش حساسیت به شوری ممکن است نتیجه حساسیت بیشتری بیشتر این امر در برای شناس و پرورش کلی اگزوتیون آسکوربات گلوتاتیون در برای تنش می باشد (Dat et al., 2008).

جدول1- جدول تجزیه واریانس صفات کنترل، برکسیداز، گلوتاتیون، ربدات اکسیداتورهای سانسپراکسی ها و آنزیمها در جوی مارگین

<table>
<thead>
<tr>
<th>آرادی</th>
<th>فعالیت</th>
<th>درجه</th>
<th>مرحله</th>
<th>برنامه</th>
<th>گلوتاتیون</th>
<th>برکسیداز</th>
<th>ربدات اکسیداتورهای سانسپراکسی</th>
<th>آنزیم</th>
<th>آنزیم</th>
<th>آنزیم</th>
<th>آنزیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
</tbody>
</table>

NADPH
REFERENCES

