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Abstract

Drought stress.is a major limiting factor for crop production in arid and semi-arid regions. Given
the importance of lentil (Lens culinaris) and its rainfed cultivation in Iran, this study aimed to
investigate the response of two sensitive and tolerant lentil genotypes to drought stress at different
levels (control, moderate stress, and severe stress corresponding to 90%, 60%, and 30% of field
capacity). Morphological, physiological, and biochemical traits, as well as the relative expression
of key genes involved in drought tolerance pathways, including Beta Amylase, DREBIC,
ABAWDS, HCF136, and MIMP, were evaluated using qRT-PCR. Results showed that increasing
drought stress intensity led to significant reductions in traits such as plant height, shoot and root
fresh and dry weight, relative leaf water content, leaf area index, chlorophyll, and total leaf protein.
Conversely, traits like leaf hair density, electrolyte leakage, accumulation of proline and
carbohydrates, and the concentrations of malondialdehyde and hydrogen peroxide increased. Gene
expression analysis in the tolerant genotype revealed a significant increase in the expression of
ABAWDS and HCF136 genes and a decrease in the expression of Beta Amylase, DREB1C, and
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MIMP genes under increasing stress. These findings highlight the role of these traits and genes in
the mechanism of drought tolerance in lentil and can be utilized in breeding programs to develop
drought-tolerant varieties.
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Genotypes 1 191.10* 0.23ms 1227.60™ 1.78* 0.38™ 165.98™ 0.34™ 0.16" 0.0™ 0.003 0.07*
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03 S DS
Drought stress represents one of the most formidable abiotic challenges to global agricultural
productivity, particularly in arid and semi-arid regions where water scarcity is a pervasive issue.
The escalating frequency, intensity, and duration of drought events, exacerbated by climate change,
pose a significant threat to food security and sustainable agricultural practices worldwide. Lentil
(Lens culinaris), a diploid legume, stands as a cornerstone of global food systems, ranking as the
sixth most important pulse crop by production volume. Its nutritional density, providing substantial
plant protein, complex carbohydrates, dietary fiber, and essential micronutrients, underscores its
critical role in human diets. In Iran, where rainfed lentil cultivation is prevalent and water scarcity
is a national concern, understanding and mitigating the adverse effects of drought on this vital crop
is paramount. This study was designed to elucidate the multifaceted responses of lentil to varying
degrees of drought stress, focusing on two distinct genotypes: one previously identified as drought-
sensitive (FLIP2002-55) and-another as drought-tolerant (FLIP2002-57).
The experimental design employed a factorial arrangement based on a randomized complete block
design with three replications, conducted under controlled greenhouse conditions. Drought stress
was incrementally applied at three distinct levels: control (90% field capacity), moderate stress
(60% field capacity), and severe stress (30% field capacity). Subsequently, comprehensive
measurements were taken on a wide array of morphological, physiological, and biochemical traits,
alongside an investigation into the relative expression of key drought-responsive genes using
quantitative real-time PCR (qRT-PCR).
Morphological assessments revealed significant reductions in plant height, shoot and root fresh
and dry weights, and leaf area index across both genotypes as drought intensity increased.
Physiological analyses demonstrated a significant decline in relative leaf water content (RWC)
with escalating drought stress in both genotypes, although the tolerant genotype generally
maintained higher RWC values, indicative of better osmotic adjustment and cell wall elasticity.
Electrolyte leakage, a direct measure of membrane damage, significantly increased in both
genotypes under drought, with a more pronounced increase observed in the sensitive genotype.
This highlights the superior membrane stability of the tolerant genotype under stress. Biochemical
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investigations revealed a consistent pattern of stress-induced changes. Increasing drought intensity
led to a significant decrease in chlorophyll and total leaf protein content, consistent with oxidative
damage to photosynthetic machinery and protein degradation. Conversely, the concentrations of
carotenoids, proline, total carbohydrates, malondialdehyde (MDA), and hydrogen peroxide
(H202) significantly increased.

Furthermore, the activities of key antioxidant enzymes, including catalase (CAT), ascorbate
peroxidase (APX), and guaiacol peroxidase (GPX), were evaluated. While the overall trend
showed increased antioxidant enzyme activity under moderate stress, particularly in the tolerant
genotype, severe stress sometimes led to a decline, possibly due to enzyme denaturation or
overwhelming oxidative load. The tolerant genotype consistently demonstrated a more robust and
sustained antioxidant defense system compared to the sensitive genotype, which is critical for
detoxifying ROS and mitigating oxidative damage.

At the molecular level, qRT-PCR was employed to assess the relative expression of five key genes
implicated in drought tolerance pathways: Beta Amylase (B4), Dehydration-Responsive Element-
Binding protein (DREBIC), ABA-WDS induced protein (4BAWDS),  High. Chlorophyll
Fluorescence 136 (HCF136), and myo-inositol monophosphatase (MIMP). In the tolerant
genotype, severe drought stress significantly upregulated the expression of ABAWDS and HCF136
genes by approximately 2.5-fold and 2-fold, respectively, compared to ‘control conditions.
ABAWDS is associated with abscisic acid (ABA) signaling, a crucial hormone in drought response,
mediating stomatal closure and root growth adjustments. The increased expression of HCF136, a
gene involved in photosystem II stability, suggests. an adaptive mechanism to maintain
photosynthetic efficiency under stress. Conversely, the expression of Beta Amylase, DREBIC, and
MIMP genes significantly decreased in the tolerant genotype under severe drought. While Beta
Amylase is involved in starch degradation for sugar accumulation, its downregulation might
indicate a shift in carbohydrate metabolism or a genotype-specific response. Similarly, the reduced
expression of DREBIC, a transcription factor typically associated with stress gene activation, and
MIMP, involved in myo-inositol metabolism, in the tolerant genotype under severe stress warrants
further investigation to fully understand their nuanced roles in this specific context. In the sensitive
genotype, HCF136 showed a modest increase (approximately 1.5-fold), while the other genes
(ABAWDS, DREBIC, BA, and MIMP) exhibited a general downregulation or minimal change,
indicating a less effective molecular response to drought compared to the tolerant genotype.
These findings collectively underscore the intricate interplay of morphological, physiological,
biochemical, and molecular mechanisms contributing to drought tolerance in lentil. The tolerant
genotype's superior performance across multiple parameters — including better maintenance of
water status, reduced membrane damage, enhanced antioxidant defense, and specific gene
expression patterns — highlights its adaptive capacity. The differential gene expression profiles,
particularly the upregulation of ABAWDS and HCF'136 in the tolerant genotype, provide valuable
molecular markers for drought resilience. This comprehensive analysis not only deepens our
understanding of drought tolerance mechanisms in Lens culinaris but also offers critical insights
for future lentil breeding programs. By leveraging these identified traits and genetic markers, it is
possible to develop and select new drought-tolerant lentil varieties, thereby enhancing crop
productivity and ensuring food security in regions increasingly threatened by water scarcity.
Further research should focus on validating these findings in field conditions and exploring the
functional genomics of these candidate genes to accelerate the development of climate-resilient
lentil cultivars.
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