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Introduction. Drought stress is a major environmental constraint on wheat (Triticum aestivum L.) productivity,
especially in arid and semi-arid regions. It negatively impacts critical physiological processes during the reproductive
stage, resulting in significant reductions in grain yield. Grain filling is a crucial and highly susceptible phase to
drought stress, as it relies on a delicate balance between photosynthetic assimilate production and the sink strength of
developing grains. Sink strength defined by the ability of developing grains to accumulate assimilates, is mainly
determined by the endosperm cell division rate and the active cell division period. This study aimed to clarify the
physiological mechanisms of grain yield reduction under drought stress in wheat, focusing on grain-filling dynamics,
endosperm cell division, and sink capacity in two contrasting cultivars: Shoosh (drought-sensitive) and Hamoon
(drought-tolerant).

Materials and Methods. The study was conducted as a factorial experiment based on a randomized complete block
design (RCBD) with three blocks (replications). The experimental factors were as follows: (1) two spring bread wheat
cultivars (Hamoon and Shoosh), and (2) two levels of moisture regimes, including well-watered (WW, 70% of field
capacity) and drought stress (DS, 50% of field capacity), starting from the beginning of stem elongation (Zadoks
growth stage 30) onwards. Measurements included grain yield per spike, grain number per spike, final grain weight,
and several grain-filling parameters. Specifically, we examined endosperm cell number, cell division rate, active cell
division period, grain-filling rate, and active grain-filling period. Sampling was done at regular intervals from
anthesis (Zadoks growth stage 60) to physiological maturity (Zadoks growth stage 92) to create a comprehensive
profile of grain development for each treatment. Curve-fitting models were used to determine cell division and grain-
filling dynamics, and correlation analyses were performed to evaluate the relationships between physiological traits
and final grain yield.

Results and Discussion. Our results demonstrated that drought stress adversely affected all grain-filling parameters,
leading to significant yield losses, particularly in the drought-sensitive cultivar (Shoosh). The reduction in grain yield
per spike was primarily due to a decline in final grain weight. This yield component was strongly associated with
indicators of sink strength, especially endosperm cell number and grain-filling rate. The resistant cultivar (Hamoon)
exhibited a more stable yield under drought stress by maintaining a higher cell division rate and a longer grain-filling
duration. From four to 12 days after anthesis, the endosperm cell number was higher under drought conditions than
under well-watered conditions, especially in the tolerant cultivar. This was linked to an early increase in the cell
division rate and a slight improvement in the grain-filling rate, resulting in minor early increases in grain weight. The
early occurrence of peak values for cell division and grain-filling rates may indicate a drought-escape strategy, where
plants accelerate development to complete grain filling before water becomes critically limited. While this strategy
offers temporary advantages, it often leads to smaller grains. In contrast, the gradual and sustained development
observed in Hamoon suggests that drought tolerance enables continued grain filling under stress conditions. Notably,
strong positive correlations between final grain weight and traits such as maximum grain-filling rate, endosperm cell
number, and active cell division period highlight the critical role of sink capacity in determining wheat yield under
drought stress. These relationships were consistent across treatments, confirming their significance as selection
criteria for breeding.

Conclusion. The findings showed that drought stress effectively reduces wheat grain yield by disrupting
physiological processes related to grain filling, including decreased rates and duration of endosperm cell division,
grain-filling rate, and sink capacity. Meanwhile, compensatory responses such as an initial increase in cell division
and grain-filling rates during the early stages of grain filling, especially in resistant cultivars, can be considered
drought escape mechanisms. Although these responses temporarily enhance sink efficiency, they are inadequate to
sustain final yield. The variation in responses among cultivars suggests that maintaining sink capacity during drought
stress is crucial for plants' resilience to drought conditions. Accordingly, improving traits related to source and sink
dynamics, particularly by selecting genotypes with more stable cell division capacity and effective grain-filling rates,
can be an effective strategy in breeding and crop management programs to enhance the sustainability of wheat yields
under water-limited conditions.
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Table 1. Detailed information on two Iranian spring wheat cultivars.

Characteristics Hamoon Shoosh

Pedigree Falat/ Roshan CBRD-3/STORK X DICOCCOIDES
Drought response Drought resistance Drought sensitive

Year of release 2002 2014

Days to maturity (days) 145 150

Average grain yield (Kg ha™") 6420 5596

ol oke] Cawday (MUPL//WWW.SPILIT) 2,5 ;5 ¢ Jlob 4st5 g 2ol dunnsga j Joan )3 d9>g0 leMb!
The information in the table was obtained from the Seed and Plant Improvement Institute, Karaj, Iran. (http://www.spii.ir).
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Table 2. Selected chemical properties of the soil used.

Chemical Property Value
Organic matter (mg g") 12.2
Total nitrogen (mg g™') 0.86
Available nitrogen (mg kg™ 133.2
Effective phosphorus (mg kg™) 57.3
Available potassium (mg kg™!) 163

Electrical conductivity (dS m™") 2.23
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3. Grain-filling rate
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5. Endosperm cell number

6. Cell division rate
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Table 3. Variations in grain yield and its components between the two wheat cultivars, Hamoon and Shoosh.

Cultivars Treatments GY (g. spike™) GN (NO. spike™) FGW (mg)
Hamoon wWwW 1.46a 26.9a 54.40a
DS 1.09b 22.04b 49.40b
Shoosh wWwW 0.82¢ 21.93b 37.15¢
DS 0.56d 18.02¢ 30.58d
S.0.V Replication (R) 0.004" 0.055" 0.034™
Cultivar (C) 1.026** 60.615%* 975.783**
Moisture (M) 0.297** 57.684%* 100.398**
CxM 0.009™ 0.676"™ 1.848*
Error 0.007 0.703 0.269
CV (%) - 8.69 3.77 121
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The data for each cultivar are means (n=3) averaged according to well-watered (WW) and drought stress
(DS) conditions. Values with the same lowercase letters are not significantly different among various

treatments at p < 0.05 by Duncan's tests. GY, grain yield per spike; GN, grain number per spike; FGW,
final grain weight. ns, not significant; *, p< 0.05; **, p<0.01.
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7. Active cell division period
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Figure 1. Changes in main spike grain weight with the day after anthesis (DAA) of two wheat cultivars under different
treatment conditions. Treatments were well-watered (WW) and drought stress (DS) in Hamoon (CV. H) and Shoosh

(CV. SH) cultivars .The vertical bars represent + the standard error of the mean of three replicates.
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Figure 2. Changes in grain-filling rate with the day after anthesis (DAA) of two wheat cultivars under different treatment
conditions. Treatments were well-watered (WW) and drought stress (DS) in Hamoon (CV. H) and Shoosh (CV. SH)
cultivars.
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Figure 3. Changes in main spike endosperm cell number with the day after anthesis (DAA) of two wheat cultivars

under different treatment conditions. Treatments were well-watered (WW) and drought stress (DS) in Hamoon
(CV. H) and Shoosh (CV. SH) cultivars. The vertical bars represent + the standard error of the mean of three replicates.
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Figure 4. Changes in cell division rate with the day after anthesis (DAA) of two wheat cultivars under different
treatment conditions. Treatments were well-watered (WW) and drought stress (DS) in Hamoon (CV. H) and Shoosh
(CV. SH) cultivars.
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Table 4. Variations in the active grain-filling period and active cell division period between the two wheat cultivars,
Hamoon and Shoosh.

Cultivars Treatments AGFP (days) ACDP (days)
Hamoon Ww 26.42a 14.99a
DS 25.18b 10.63b
Shoosh wWwW 24.32b 14.23a
DS 21.90c 9.21c
S.0.V Replication (R) 0.160™ 0.037™
Cultivar (C) 21.708** 3.575%
Moisture (M) 10.046** 66.035%*
CxM 1.044" 0.323™
Error 0.314 0.482
CV (%) - 2.29 5.66
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The data for each cultivar are means (n=3) averaged according to well-watered (WW) and drought stress (DS) conditions.

Values with the same lowercase letters are not significantly different among various treatments at p< 0.05 by Duncan's tests.
AGFP, active grain-filling period; ACDP, active cell division period. ns, not significant; *, p<0.05; **, p< 0.01.
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Table 5. Regression analysis of the Richards growth model for grain weight (GW) and endosperm cell number (ECN) in two wheat cultivars,
Hamoon and Shoosh, under well-watered (WW) and drought stress (DS) conditions.

Trait Cultivars  Treatments A B K N R? Adj.R*> SEE
GW Hamoon WW 54.87** 17.24™ 0.18%* 0.53* 0.99 0.99 1.30
DS 50.45%* 16.09* 0.18%%* 0.59* 0.99 0.99 0.58

Shoosh wWw 37.61%* 24.21™ 0.19%** 0.71% 0.99 0.99 0.34

DS 30.77%* 21.05* 0.23%%* 0.63* 0.99 0.99 0.34

ECN Hamoon wWw 333.37%* 87.97" 0.38* 1.04* 0.99 0.99 3.77
DS 237.9%%* 52.84* 0.52%%* 0.83* 1.00 1.00 0.18

Shoosh wWw 231.49%* 74.46™ 0.39* 0.91* 0.99 0.99 2.97

DS 144.63** 18.75%* 0.56* 0.67* 1.00 1.00 0.14
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A, estimated maximum value of the dependent variable; B, slope coefficient of the growth curve; k, growth rate constant; N, shape parameter

of the growth curve; R?, coefficient of determination; Adj. R?, adjusted coefficient of determination; SEE, standard error of estimate. ™, not
significant; *, p< 0.05; **, p<0.01.
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Figure 5. Heatmap correlation between the studied traits under well-watered conditions. GY, grain yield per
spike; GN, grain number per spike; GFR (Max), maximum grain-filling rate; AGFP, active grain-filling
period; FGW, final grain weight; CDR (Max), maximum cell division rate; ACDP, active cell division

period; Final ECN, final endosperm cell number.
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Figure 6. Heatmap correlation between the studied traits under drought stress conditions. GY, grain yield per
spike; GN, grain number per spike; GFR (Max), maximum grain-filling rate; AGFP, active grain-filling
period; FGW, final grain weight; CDR (Max), maximum cell division rate; ACDP, active cell division

period; Final ECN, final endosperm cell number.
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10. Escape mechanisms
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